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ABSTRACT

The continuous development of modern VLSI technology has brought

new challenges for on-chip interconnections. Different from classic

net-by-net routing, bus routing requires all the nets (bits) in the same

bus to share similar or even the same topology, besides considering

wire length, via count, and other design rules. In this paper, we present

MARCH, an efficient maze routing method under a concurrent and hi-

erarchical scheme for buses. In MARCH, to achieve the same topology,

all the bits in a bus are routed concurrently like marching in a path. For

efficiency, our method is hierarchical, consisting of a coarse-grained

topology-aware path planning and a fine-grained track assignment for

bits. Additionally, an effective rip-up and reroute scheme is applied to

further improve the solution quality. In experimental results, MARCH

significantly outperforms the first place at 2018 IC/CAD Contest in

both quality and runtime.

1 INTRODUCTION

The continuous development of modern VLSI technology has brought

new challenges for on-chip interconnections. In modern designs, there

are buses with long wires that can introduce long wire delay. To main-

tain signal integrity, some post-routing optimizations such as buffer

insertions are needed. However, if the bits in the same bus are routed

in different topologies, it is very difficult to find places to insert buffers

for different bits of the same bus in a regular manner. To resolve this

problem, it is preferred to have the same routing topology among all

the bits of a bus, which is different from classic net-by-net routing. In

spite of reducing the size of the solution space of the routing problem

to some extent, this topology constraint also makes it more difficult

to efficiently allocate appropriate routing resources to each bus on

multiple metal layers. Meanwhile, similar to classic net-by-net routing,

solution qualities such as wire length and via count are also important

metrics to optimize for bus routing. An effective bus router should

provide a solution with high routing quality while maintaining the
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Figure 1: (a) A bus with two pins and three bits to be routed;

(b) The bits routed one by one; (c) The Topology-Aware Path

planning (TAP) result; (d) The Track Assignment for Bits (TAB)

result.

topology consistency among different bits of the bus for the benefits

of signal synchronization.

Routing has been well studied by many previous works, including

both global routing (e.g. ARCHER [1], NCTU-GR [2], and NTHU-

Route [3]) and detailed routing (e.g. TritonRoute [4] and Dr. CU [5]).

However, the techniques of these works can hardly be straightfor-

wardly applied in bus routing due to the difficulty of maintaining

topology consistency. If the buses are processed bit by bit (e.g. route

bit 1, 2 and 3 sequentially as in Figure 1 (b)), the latter bits may lack

available track segments to be routed on especially when the routing

track configuration is non-uniform and complex. In the worst case,

much effort of trial and error is needed until finding a feasible topol-

ogy. There are some previous works handling related issues for escape

routing on printed circuit board (PCB) designs, e.g. pin assignment

guaranteeing routability [6], layer assignment to minimize the number

of layers used [7], and an ILP-based solution [8] to solve the entire

bus planning problem. However, for typical escape routing on PCB

designs, it is not required to have the same topology among different

bits of the same bus although the bus bits are typically routed together.

To observe the topology constraint, Streak [9] uses a representative

bit to generate a set of topology candidates and then applies an ILP

to select a good one. All the other bits in the bus try to follow the

selected one. However, the selected topology may not be achievable



due to the lack of routing resources. To handle this issue, there is a post-

refinement stage in Streak where the original bus will be divided into

several sub-buses and different sub-buses will have different topologies.

Therefore, the techniques in Streak are not useful for this problem since

a bus cannot be split into sub-buses of different topologies. Besides

Streak, there is very few previous work aiming at routing buses with

topology constraint.

In this paper, we present an effective bus routing method named

MARCH which can efficiently solve this important problem handling

practical issues like minimum spacing and minimum wire width on

metal layers with irregular track structures. The objective is to finish

routing all the buses, maintaining the same topology for different

bits of a bus while optimizing metrics like wire length, wire segment

number and compactness of the buses. The main contributions of this

paper can be summarized as follows.

• We propose MARCH, which routes all the bits in a bus con-

currently, instead of processing bit after bit. Such concurrency

directly captures the topology consistency constraint together

with other objectives (e.g. wire length) and constraints (e.g. spac-

ing) in a correct-by-construction manner.

• Ahierarchical framework is designed for the efficiency ofMARCH,

consisting of a Topology-Aware Path planning (TAP) and a

Track Assignment for Bits (TAB). TAP is efficient as it works on

a coarse-grained solution space (see Figure 1 (c)). TAB gener-

ates fine-grained routing solution, but it also gains efficiency by

searching on the regions provided by TAB only (see Figure 1 (d)).

• We present an effective rip-up and reroute scheme to further

improve the routing solution quality.

2 PRELIMINARIES

In the bus routing problem, buses may have multiple pins and have

different wire width constraints on different metal layers. In each

layer, there are routing obstacles and non-uniform routing tracks with

different lengths and wire width constraints.

2.1 Evaluation Metrics

The total cost Ctotal of a bus routing solution is the summation of the

failure penalty cost Cf ail , the spacing penalty cost Cspace , and the

routing cost Croute of all the buses.

Ctotal = Cf ail +Cspace +Croute (1)

2.1.1 Failure Penalty Cost. A successfully routed bus has to satisfy

the following requirements. The routing tree of a bit needs to connect

all the pins of the bit. All wires should be on-track and do not violate

the width constraint of the track. More importantly, all bits are routed

with the same topology satisfying the following requirements. (a) All

bits should have the same number of wire segments. In Figure 2 (a), bit 1

has three wire segments, while bit 2 has only one. (b) Wires of different

bits should go through the same sequence of layers. The routing in

Figure 2 (b) violates this since bit 1 goes through M2, M1, and M2,

while bit 2 goes through M2, M3, and M2. (c) Wires of different bits

should be routed towards the same directions. In Figure 2 (c), bit 1 is

routed right, down, and right, while bit 2 is routed right, up, and right.

(d) Within each segment of the topology, the bit order should either be

the same as or in reversed order of the bits at the pin locations. Note

that on the layer with horizontal (vertical) tracks, the bit order is from

bottom to top (left to right). In Figure 2 (d), the bit order of the middle
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Figure 2: Four types of topology failures

wire segments is neither the same as nor in reversed order of the bits

at the pin locations, so the constraint is violated.

Let Nf ail denote the number of buses failed to be routed, then

Cf ail = wf ail · Nf ail .

2.1.2 Spacing Penalty Cost. Any pair of objects (e.g. wires of differ-

ent bits, obstacles, chip boundary, etc.) on the same layer should not

violate their corresponding spacing constraints. Let Nspace denote the

number of spacing violations, then Cspace = wspace · Nspace .

2.1.3 Routing Cost. For successfully routed buses, the routing cost

Croute can be computed based on three normalized costs: wire length

cost Cbwire , segment cost Cbseд , and compactness cost Cbcom :

Croute =
∑

bus b

wwire ·C
b
wire +wseд ·C

b
seд +wcom ·C

b
com (2)

whereCbwire is the average (among all the bits) of the total wire length

of a bit divided by the half parameter wire length of the bit, and Cbseд
is the segment number of the topology divided by a lower bound [10].

Cbcom is the average (among all thewire segments) of the segmentwidth

divided by a lower bound [10], where segment width is the distance

between the two outermost bits of the segment. A good routing solution

should have short wire length, less segments in the topology, and more

compacted width in each segment.

2.2 Problem Formulation

Problem 1 (Bus Routing). Given the pin information and width

constraints of the buses, the tracks and their width constraints on each

layer, and the obstacles, connect all the pins of each bit for all the buses

and minimize the cost Ctotal .

3 ALGORITHMS

The framework of MARCH consists of two levels of loops. The inner

loop routes all the buses (see the green box in Figure 3), and the outer

loop is a Rip-up and Reroute (RR) scheme that tries to find a better solu-

tion. During initialization, with the loaded information of buses, tracks,

and obstacles, a Bus-based Grid Graph (BGG) data structure, which

will be used during the whole procedure, will first be constructed.

In the inner loop, each bus will go through fours steps: Bus-based

Grid Graph (BGG) update, Topology-Aware Path planning (TAP), Track

Assignment for Bits (TAB), and track occupancy update. First, BGG

will be updated according to the bus to be routed so that it can provide
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Figure 3: Overall flow of MARCH

accurate information of the routing resources meeting the width con-

straint of the bus. The pins of the bus will be marked on the BGG. The

bits will then be routed concurrently on BGG during TAP. In TAP, a

row of grid graph cells (G-cells), named frontline, will propagate from

the source pins to the sink pins, generating a routing path consisting

of a set of rectangular regions (e.g. Figure 1 (c)) called TAP regions.

The TAP regions will be used to guide TAB later on.

To check spacing violations, each track maintains its track occupancy

which records the positions of the segments on the track that cannot be

used because of the spacing violation with some neighboring obstacles

or routed wires. When one tries to use a certain part of a track, an

accurate number of spacing violations incurred can be obtained by

checking the track occupancy. The track occupancy is maintained by a

binary search tree (BST) for efficiency. After TAB, the track occupancies

of all the tracks will be updated according to the track segments used

by the previously routed bus.

After routing all the buses, a routing solution will be generated. An

evaluator then computesCtotal according to the metrics in Section 2.1.

The best solution will be updated if a lowerCtotal is found. The evalu-

ator results will also determine whether a RR process is needed. If so,

history costs computed according to the detected spacing violations

will be added to BGG, and the routing procedure will be restarted.

3.1 Bus-based Grid Graph (BGG)

BGG plays an important role in our algorithm since it provides the

necessary information for cost estimation during TAP. BGG is a multi-

layer grid graph with uniform G-cells. In each layer of BGG, there is

an edge connecting adjacent G-cells along the layer’s routing direction.

The bits can be routed along the edge or switched to a neighboring

G-cell on adjacent layers by via.

Each edge stores its own edge capacity and history cost. The edge

capacity is computed during BGG update. It approximates the maxi-

mum number of tracks that meets the width constraint of the bus to

be routed and can be used concurrently without causing any spacing

violation. For instance in Figure 4, suppose the bus width is 10 and

the spacing constraint is 50. To obey the spacing constraint among
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different bits of the same bus, neighboring tracks cannot be used con-

currently for this example. Meanwhile, since the track with the lowest

index will be checked first, the tracks t1, t3, and t5 will be used to

compute the edge capacity of the BGG in this example. By checking

the track occupancies, the available segments on these tracks can be

obtained (shown as dashed lines in Figure 4). The edge capacity of an

edge in the BGG is then computed as the number of available track

segments with enough length to connect the two adjacent G-cells. In

Figure 4, for the edge e1, its edge capacity is 1 since only the track t5
(out of t1, t3 and t5) has enough length to connect its two neighboring

G-cells. The edge capacities of edges (e1, e2, ..., e6) are (1, 2, 1, 0, 1,

0) respectively. For history cost, it can reflect the degree of routing

congestion in the edge and will be accumulated when the rip-up and

reroute process is performed.

3.2 Topology-Aware Path Planning (TAP)

In order to obtain a routable topology that all the bits can follow,

TAP is needed to route the bits concurrently. In TAP, the frontline,

which is a row of G-cells, will concurrently propagate to find a good

path for all the bits. During initialization, the frontline sizes, i.e. the

number of G-cells contained, are determined. Note that each bus has

different frontline sizes on different layers because the track spacing

on different layers varies. The frontline size for a layer considers both

the bit number of the bus and the average edge capacity of that layer.

The frontline sizes will all be computed at the beginning and will be

changed only during rip-up and reroute.

3.2.1 A toy example. In Figure 5, the bus has two pins and four bits.

The BGG has two layers where the frontline sizes of the bus are 3 and

2 respectively. The aim of TAP is to generate a "path" to connect Pin

0 marked at F1 and Pin 1 marked at F4. The path consists of a set of

TAP regions. It can be generated as follows. Starting from position F1,

the frontline will go up along the routing direction of the metal layer

until reaching F2. At F2, the frontline will switch to the adjacent layer

and reach F3. Finally, the frontline will go right on the adjacent layer

to reach the destination F4. This path planner result consists of two



connected TAP regionsT1 andT2, formed by propagating the frontline

on one layer.

For the bus with more than two pins, similar to the classic maze

routing, MARCH will first find the path between the source pin and

one of the sink pins through the propagation from the source pin. The

propagation will then start from the current path to connect to the

next pin. This process is repeated until all the pins are connected.

3.2.2 Same Layer Propagation. When propagating the frontline on

the same layer, it is necessary to know the number of tracks that can

be used concurrently. Thus, the frontline will maintain a set of values,

called running capacity, each of which is associated with a G-cell in

the frontline. When propagating on the same layer, the values in the

running capacity of the frontline will decrease if the capacities of the

edges the frontline goes through get smaller. It can happen because

some tracks are brokenmidway, while the new ones will not be counted

since the track needs to run continuously from the beginning to the

end in order to be useful. For instance, at F1 of Figure 5, the running

capacity (from the left G-cell to the right) of the frontline is (2, 2, 3).

Reaching F2, the running capacity becomes (1, 2, 1). The feasibility

of the propagation can be determined by comparing the summation

of the running capacity values with the bit number of the bus. The

running capacity of the last frontline in a TAP region is considered as

the running capacity of the whole TAP region. After switching layers,

the running capacity will be reinitialized.

3.2.3 Layer Switching. Switching layers is the process that the

frontline goes from one layer to its upper layer or lower layer which is

usually of different routing direction. The main difficulty of switching

layer is to decide whether it is safe or not to switch, or in another word,

whether it will have enough routing resources without causing any

spacing violation. Figure 6 (a) denotes a simple switching node which

is comprised of 4 × 4 G-cells. In the following we will assume that

the wires enter the node from below and leave from the right without

loss of generality, and other situations can be handled similarly. The

number on each edge denotes the edge capacity. Moreover, there are

two ways of passing through a switching node, one is passing with

the bit order unchanged (Figure 6 (b)), and the other is passing with

the bit order flipped (Figure 6 (c)).

To decide whether passing through a switching node is safe or

not, we have to compute the maximum number of bits that can pass

through the node with bit order either flipped or not. Take the node in

Figure 6 (a) as an example, the number of bits that can pass through the

node are very different for the flipping and not flipping cases. Keeping

the bit order unchanged, the node allows at most 5 bits to pass through

(Figure 6 (b)), whereas by flipping the bit order, up to 8 bits can be

routed through the node (Figure 6 (c)).

We propose an efficient algorithm to compute the maximum bit

number that can pass through a given switching node for the two

cases. For the case of keeping the bit order unchanged, we start by

routing the bits from the rightmost column, and continue to the left

one by one. Every time, we will use up all the resources on a lower row

before using the resources on an upper row. In this way, the maximum

number of routable bits can be counted.

For the case of flipping the bits, the situation is more complicated,

since a bit routed earlier may sometimes block the path of the bits to

be routed later due to the topology constraints. Therefore, the greedy

approach used in the former case is not applicable. For example, if

we try to route through the node in Figure 6 (d) greedily from the

leftmost to the rightmost column, only 5 bits can be routed (Figure 6 (e)).
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Figure 6: 4 × 4 switching nodes

However, if we give up 1 bit in the first column, we can end up routing 7

bits through (Figure 6 (f)). Unfortunately, it is usually unknown which

bits to sacrifice would give us better result before all the bits are routed.

Therefore, in our strategy, both will be tried, and the better result will

be adopted.

Algorithm 1 demonstrates our methodology to compute the maxi-

mum switching node capacity with flipped bit order. Assume that the

columns are indexed 1, 2, ...,n from left to right, and the rows are in-

dexed 1, 2, ...,m from bottom to top. The functionNodeCapacityFlip(i, j)

returns the maximum number of bits that can pass through the node

with flipped bit order and under the constraint that the bits can only

enter the columns with indexes larger than i , and leave from the rows

with indexes larger than j. Hence, NodeCapacityFlip(0, 0) will make

use of the whole node, and returns the desired result of the maximum

layer switching capacity with flipped bit order. The time complexity

of the algorithm in the worst case is exponential. However, it can be

finished very efficiently for most of the cases, because the runtime

is linear for a congestion-free node, and will at most double when

one bottleneck edge (Figure 6 (d)) exists in the node. Empirically, very

few nodes (less than 5%) contain such bottleneck edges. The actual

percentage depends highly on the sufficiency of the routing resources

as indicated by the BGG. Besides, the algorithm improves the overall

runtime of TAP, because the nodes with insufficient capacities are

pruned in an early stage and will no longer be explored.

After exiting the switching nodes, the running capacity of each

G-cell in the frontline will be reinitialized as the maximum number of

bits that can exit from the G-cell for subsequent propagation.

3.2.4 Cost Estimation. During TAP, the actual cost that will be

induced is not known yet, but it is essential to estimate the cost accu-

rately in order to find a better path having potentially lower actual cost.

The estimated cost is the summation of three values: wire length cost,

segment count cost and spacing violation cost. Note that the compact-

ness cost is not taken into consideration, because our algorithm will

always propagate with the most compact frontline and will enlarge its

size only when necessary.

The first two costs are fairly easy to estimate. Therefore, in the

following we will mainly focus on estimating the violation cost. We



Algorithm 1 Computem ×n switching node capacity with flipped bit

order

1: function NodeCapacityFlip(i , j)

2: if i >= n or j >=m then

3: return 0

4: capacity ← The maximum number of bits that can be routed

from column i to row j

5: Record capacity change

6: if no more bits can enter column i then

7: return capacity + NodeCapacityFlip(i + 1, j)

8: if no more bits can exit row j then

9: return capacity + NodeCapacityFlip(i, j + 1)

10: return capacity + max(NodeCapacityFlip(i + 1, j),

NodeCapacityFlip(i, j + 1))
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Figure 7: Spacing violation cost estimation

estimate the violation count based on the changes of the total edge

capacity of the edges that the frontline passes through. More specifi-

cally, when the total edge capacity drops below the bit number of the

bus, the amount of the drop below the bit number will be accumulated

as violation count. For instance, consider a frontline with 4 G-cells

moving from x1 to x7 as in Figure 7 (a), the capacity change in the

frontline is illustrated in Figure 7 (b). If the bit number of the bus

is 3, the total capacity drops below the bit number at x2, x5 and x6
respectively. Consequently the estimated violation cost is calculated as

(3 − 1) + (3 − 2) + (2 − 1) = 4. This approach can well avoid counting

the same violation multiple times. Additionally, the history cost will

be added into the total cost at last.

3.3 Track Assignment for Bits (TAB)

TAB selects a track and determines the exact positions on the track

(called track segment range) to be used for each bit. However, this is

a chicken-and-egg problem. On one hand, in a TAP region, the track

segment range of a bit determines which track can be selected. On the

other hand, the track selections also determines the exact positions

on the tracks where the bits can be routed. For instance, the track

selections of T1 and T2 determine the track segment ranges of each

other in Figure 8. To handle this problem, TAB is conducted in four

steps: rough track selection, track segment range estimation, exact

track selection, and exact track segment range assignment.

T2

Estimated Track Segment Range

Actual Routed Wires Segment

Occupied by ObstacleObstacle on M2

bit 1

bit 2

bit 3

bit 4

t1

t2

t3

t4

t5

t6

t7

T3

T1

M1

M2

Figure 8: An example of track assignment for bits

3.3.1 Rough Track Selection. First, the track for each bit is roughly

selected by determining the column/row of G-cells where the bit will be

routed. To perform this rough track selections for all the bits, a simple

greedy method based on the running capacity of the TAP region is

adopted. Take T3 in Figure 8 as an example. Assume that its running

capacity is (3, 3) (as explained in Section 3.2.2), the bits will be roughly

routed, following the bit order. Therefore, bits 1∼3 will be routed in

the leftmost column of G-cells, while bit 4 will be routed in the next

column on the right. The rough track selections in other TAP regions

(e.g. T1 and T2) will be performed in the same way.

3.3.2 Track Segment Range Estimation. For a TAP region, its esti-

mated track selection determines the track segment range estimations

of its neighboring TAP regions (e.g. T1 and T3 affects T2). For bit 2 in

T2 of Figure 8, it needs to reach the middle column of G-cells inT1 and

the leftmost column in T3. Thus, its track segment range in T2 can be

estimated conservatively marked as the red solid line in Figure 8.

3.3.3 Exact Track Selection. In each TAP region, with the estimated

track segment ranges, the track for each bit can be exactly selected.

The track meeting the following three requirements will be selected

for the bit: (1) satisfying the width constraint of the bus, (2) with long

enough segment, and (3) without spacing violation.

The last two requirements are checked with the information of

the estimated track segment ranges. If a track cannot meet all the

requirements for a bit, the next track will be attempted. In a horizontal

(vertical) TAP region, the tracks will be attempted from bottom (left)

to top (right). The track selection will follow the bit order. That is,

the track selection for a bit will start from the track next to the track

selected for the previous bit. ForT2 in Figure 8, the track t1 will first be

selected for bit 1 because it is long enough and violation-free. For bit

2, t4 will be selected, instead of t2 and t3 because of spacing violation.

The other bits will be processed in the same way. Suppose the spacing

between each pair of tracks inT2 does not violate the spacing constraint,

the exact track selection is shown in Figure 8.

Sometimes, there are not enough violation-free tracks in a TAP

region, a violation threshold will be set which is an upper bound on

the number of spacing violations caused by selecting a track. This

violation threshold will be incremented gradually from zero to relax

the requirement of the spacing constraint step by step until finding an

enough number of tracks.

3.3.4 Exact Track Segment Range Assignment. After finishing the

exact track selections in all the TAP regions, the track segment range

for each bit can be decided. One can see the actual routedwire segments

in Figure 8.



Table 1: Detailed Results of MARCH on IC/CAD 2018 Benchmarks
Characteristics Metric Weights MARCH Scores

bus

no.

net

no.

layer

no.

track

no.
wwire wseд wcom wspace wf ail Cwire Cseд Ccom Croute Nspace Nf ail Ctotal Time (s)

beta1 34 1260 3 49209 5 1 5 8 2000 34 34 112 765 0 0 765 50
beta2 26 1262 3 49209 5 1 5 8 2000 26 26 85 578 0 0 578 9
beta3 60 665 3 22732 12 1 4 8 2000 72 62 253 1942 0 0 1942 72
beta4 62 698 3 22732 12 1 4 8 2000 76 71 294 2165 0 0 2165 39
beta5 6 1964 4 54150 8 1 5 8 2000 6 6 13 118 231 0 1966 12
final1 18 1032 3 81226 10 1 5 10 2000 18 22 30 356 84 0 1196 352
final2 70 1285 3 14209 10 1 5 10 2000 70 81 259 2071 148 0 3551 199
final3 47 852 4 21379 10 1 5 10 2000 47 51 558 3313 15 0 3463 133

* Cwire =
∑
bus b C

b
wire , Cseд =

∑
bus b C

b
seд , Ccom =

∑
bus b C

b
com

Table 2: Comparison with Winners of IC/CAD 2018 Contest
First Place Second Place Third Place MARCH

Croute Cspace Cf ail Ctotal Time (s) Croute Cspace Cf ail Ctotal Time (s) Croute Cspace Cf ail Ctotal Time (s) Croute Cspace Cf ail Ctotal Time (s)
beta1 689 280 0 969 3600 701 5096 0 5797 - 641 8744 4000 13385 - 765 0 0 765 50
beta2 515 760 0 1275 3600 563 4904 0 5467 - 484 9472 2000 11956 - 578 0 0 578 9
beta3 1936 0 0 1936 71 2024 0 0 2024 - 1999 1928 0 3927 - 1942 0 0 1942 72
beta4 2192 0 0 2192 64 2271 0 0 2271 - 2250 1048 0 3298 - 2165 0 0 2165 39
beta5 119 1848 0 1967 3600 95 616 2000 2711 - 98 1216 2000 3314 - 118 1848 0 1966 12
final1 327 830 2000 3157 3317 367 2750 2000 5117 - 252 0 10000 10252 - 356 840 0 1196 352
final2 1824 4500 8000 14324 3600 1890 2990 8000 12880 - 1976 6910 0 8886 - 2071 1480 0 3551 199
final3 2966 490 10000 13456 3600 2678 300 2000 4978 - 4238 20 24000 28258 - 3313 150 0 3463 133
Avg. Ratio 2.130 105.45 3.731 7.832 1.000 1.000

3.4 Rip-up and Reroute Scheme

Rip-up and Reroute (RR) is widely used in classic routing problems

to negotiate between different nets routed in congested regions. The

RR scheme in MARCH will do two things: (1) Add history cost to the

edge of BGG; (2) Enlarge the frontline size when violation-free routing

resources are not sufficient.

After an evaluation, the wire segments violating spacing constraints

will be known. The corresponding edges of the BGG covered by these

segments will be added a history cost. The history cost of an edge

is accumulated by this equation: hnew = α · nspace + β · hold where

nspace is the number of spacing violations on this edge, and α and β

are weights. When more iterations of RR are executed, the congested

regions on the BGG can be eliminated gradually.

Recall that each bus has different frontline sizes for different layers.

when the number of spacing violations in a TAP region of one layer is

more than the bit number of the bus, this layer will be marked. In the

next RR, if the same problem occurs, the frontline size of the bus on

that layer will be increased by one.

4 EXPERIMENTAL RESULTS

We implement MARCH in C++. Experiments are performed on a 64-bit

Linux workstation with Intel Xeon 3.4 GHz CPU and 32 GB memory.

Benchmarks are from IC/CAD 2018 Bus Routing Contest [10], the

statistics of which is shown in Table 1. The runtime limit of each case

is 1 hour.

The detailed scores of MARCH are shown in Table 1. It can be

observed that the penalty costCf ail +Cspace can be reduced to a level

relatively smaller than the routing cost Croute .

Table 2 shows the comparison with the winners of IC/CAD 2018

Contest1. Compared with them, MARCH not only reduces spacing

violations greatly but also gets rid of all routing failures, achieving the

best total cost Ctotal in seven out of eight cases. On average, Ctotal

1 The scores of top 3 teams of IC/CAD 2018 Contest are provided by the contest organizer.
A binary is also obtained from the first place to get its runtime information.

of MARCH is 2.130, 3.731, and 7.832 times better than the first, second

and third place. At the same time, MARCH runs tremendously faster

than the first place (with 105× speed-up on average). This indicates the

effectiveness and efficiency of the concurrent and hierarchical scheme

of MARCH.

5 CONCLUSION

In this paper, we propose MARCH for bus routing. Compared with

classic net-by-net routing methods, MARCH routes all the bits of a bus

concurrently for topology consistency. MARCH also has an efficient

hierarchical framework, consisting of a coarse-grained TAP and a fine-

grained TAB. To reduce the routing congestion, a RR scheme is used.

Experiments show that compared with the top contest teams, MARCH

greatly reduces spacing violations and avoids any routing failure with

competitive routing costs in a much shorter runtime.
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