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Abstract—To enable the performance optimization of appli-
cation mapping on modern field-programmable gate arrays
(FPGAs), certain critical path portions of the designs might be
prearranged into many multi-cell macros during synthesis. These
movable macros with constraints of shape and resources lead
to challenging mixed-size placement for FPGA designs which
cannot be addressed by previous works of analytical placers. In
this work, we propose AMF-Placer, an open-source Analytical
Mixed-size FPGA placer supporting mixed-size placement on
FPGA, with an interface to Xilinx Vivado. To speed up the
convergence and improve the quality of the placement, AMF-
Placer is equipped with a series of new techniques for wirelength
optimization, cell spreading, packing, and legalization. Based
on a set of the latest large open-source benchmarks from
various domains for Xilinx Ultrascale FPGAs, experimental
results indicate that AMF-Placer can improve HPWL by 20.4%-
89.3% and reduce runtime by 8.0%-84.2%, compared to the
baseline. Furthermore, utilizing the parallelism of the proposed
algorithms, with 8 threads, the placement procedure can be
accelerated by 2.41x on average.

Index Terms—analytical placement, mixed-size placement,
FPGA

I. INTRODUCTION

With advancement in semiconductor technology, field-
programmable gate arrays (FPGAs) have increased in size as
well as the variety of resources available on them. This brings
new challenges to the FPGA mapping flow.

A. Background and Previous Works

As shown in the example in Fig. 1, the latest island-
style FPGA contains a 2-D array of configurable sites, each
of which consists of basic elements of logic (BELs) [1].
For example, configurable logic block (CLB) sites consist of
BELs like look-up tables (LUTs), flip-flops (FFs), multiplexers
(MUXs) and carry chains (CARRYs). Some other sites con-
tain larger heterogeneous BELs, e.g, digital signal processors
(DSPs) and block random access memories (BRAMs). During
FPGA placement, the instances in the netlist generated by
logic synthesis should be placed on discrete sites on the
FPGA device, with the goal of shorter routing wirelength, less
congestion regions and better timing, under the constraints of
the device architecture. To realize high-quality FPGA place-
ment with high efficiency, there are three major challenges.
First, the netlists of FPGA designs consist of heterogeneous
instances, which require different hardware resources and
should be placed in their specific legal discrete sites. Second,
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Fig. 2. Example of various types of macros with shape constraints: the macros
are highlighted.

with the size of designs raised to the level of more than
1M instances, the scalability of the placer runtime becomes
critical. Third, due to the upstream optimization, macros with
constraints of shape and resource [2] [3] might be generated,
like the examples shown in Fig. 2. In this paper, we use
standard cell to denote the smallest, indivisible, representable
component in the design netlist and use macro to denote
a fixed group of multiple standard cells with constraints of
their relative locations. For example: (1) 1 MUX and 2 LUTs
connected to it should be treated as a macro; (2) a BRAM,
without cascading with other BRAMs, is a standard cell; (3) 3
cascaded DSPs should be regarded as a macro. On the FPGA
device, a macro might require multiple BELs spanning sites.
Moreover, macros will lead to high interconnection density.
These scenarios are seldom considered in previous exploration
of FPGA placement.

Some FPGA placers [4] [5], e.g., VTR, are based on simu-
lated annealing (SA), which might lead to long synthesis time
when the input netlist is large. Thus, analytical solutions using
numerical approaches were proposed to solve the placement
with high scalability and quality [6]. Gort and Anderson [6]



presented an analytical FPGA placer HeAP, which demon-
strated a 7.4× runtime advantage with 6% better placement
quality compared to the SA placement algorithm of VPR 5.0.
Chen et al. [7] proposed analytical placement solution with
efficient and effective packing achieves 50% shorter wire-
length, with an 18.30× overall speedup compared to VPR 7.0.
During ISPD 2015/2016 contest, a series of analytical placers,
e.g., UTPlaceF [8], RippleFPGA [9] and GPlace [10], were
inspired with the consideration of congestion and clock con-
straints and they showed promising performance on the contest
benchmarks. Later in 2017, LIQUID [11] was proposed with
analytical solution based on gradient-guided algorithm while
elfPlace [12] cast the placement density cost to the potential
energy of an electrostatic system which tried to include various
cost metrics in one nonlinear model to be optimized.

B. Challenges of FPGA Analytical Mixed-Size Placement

However, most of previous FPGA analytical placers except
HeAP [6] targeted at benchmarks which consist of only
standard cells, each of which will only occupy one BEL
on FPGA device, e.g., the randomly generated benchmarks
in ISPD 2015/2016 contest [13] [14]. The aforementioned
macros with shape constraints are not considered by existing
FPGA analytical placers proposed previously and this leads to
challenges in wirelength optimization, cell spreading, packing
and legalization during placement:

• Compared to standard cells, macros have many more pins
and nets connected with other instances. For example,
a CARRY macro, which might consists of 27 LUT
cells, 25 FF cells and 3 CARRY cells, could connect to
more than 200 nets outside the macro. During wirelength
optimization with wirelength estimation model, a slight
movement of these macros might lead to large distortion
of the estimation.

• Some macros in FPGA design could share CLB with
other instances at fine-grained level. It means that the
macros and standard cells can ”overlap” to some extents
in FPGA mixed-size placement.

• Legalization in previous works on FPGA analytical place-
ment are 1-to-1 legalization, i.e., one instance will require
only one site. However, in mixed-size placement, the
legalization of macros might be 1-to-many, i.e., one in-
stance might require multiple sites. Moreover, the existing
one-by-one iterative greedy legalization might be trapped
in local optimum and lead to low efficiency.

• Latest designs might include a large number of macros.
For example, in Minimap2 [15], there are 8782 macros
and 499104 standard cells. In comparison, each of the
benchmarks with macros in [6] has less than 54748 in-
stances and less than 210 macros. Existing cell spreading
algorithms for FPGA might fail to efficiently resolve
resource overflow caused by a large number of macros.

With the consideration of the scenarios in real applications
where there are elements with shape constraints, the charac-
teristics of AMF-Placer are highlighted as follows:

• enable the mixed-size placement of large-scale design
with macros of various types for FPGA-based designs.

• optimize the phases of placement especially for FPGA
mixed-size placement, including

– initial placement based on simulated-annealing
– additional pseudo nets for efficient legalization

and interconnection-density-aware weights of pseudo
nets for quadratic placement to boost high-quality
convergence

– utilization-guided search of spreading window of
overflowed region, resource supply fluctuation injec-
tion and location update with forgetting rate for cell
spreading

– progressive macro legalization
• parallelize the algorithm for each stage of the placement

to reduce runtime.
• evaluate the placement quality and runtime with latest

open-source large FPGA benchmarks from various ap-
plication domains.

The source code and Wiki of our proposed AMF-
Placer and involved open-source benchmarks are available at
https://github.com/zslwyuan/AMF-Placer.

II. PRELIMINARIES

In this section, we describe the mixed-size placement
problem in FPGA scenarios and our analytical placement
framework.

A. FPGA Macro Characteristics

As per examples shown in Fig.2, the standard cells in a
macro must be placed in adjacent sites in the same column
according to the downstream flow requirements. Usually, each
macro could include one type of core cells, which could
be CARRY cells, MUX cells, LUTRAM cells, DSP cells,
or BRAM cells. Apart from the core cells, a macro might
also include some peripheral LUT/FF cells, which are directly
connected to the core cells. According to the core cell type, the
macros can be mainly classified into 5 types and their major
characteristics are listed as below:
• The CARRYs connected with carry in/out port should be

extracted as a macro and moreover, the LUTs and FFs
connected to the related CARRYs should be assigned in
the same macro. Furthermore, to enable the routing of
some input pins of CARRY, which connect to signals
outside the CLB site, some corresponding LUT slots in
the same CLB site should be transformed into non-logic
route-thru LUTs, which are not in the original netlist.
Similarly, FF slots in CLBs might be unavailable due to
routing resource contention in CARRY macros.

• A MUX with its two input standard cells, which could be
two LUTs or two other MUXes, should be extracted as
a macro. MUX macros will also lead to route-thru usage
of LUTs or disable external interconnection of some FFs
because of the routing of selection signals.

• LUTRAM standard cells, which share input net for
read/write address and data bits, should be extracted as
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a macro. This kind of macros have to be located in
SLICEM columns of the device.

• For DSPs and RAMs, they might be cascaded to handle
larger demand of computation and storage. The standard
cells in one of these macros are interconnected by the
nets of their cascaded input/output signals. Please note
that for each RAMB36E2 standard cell, we will consider
it as a macro with 2 RAMB18E2 for legalization.

AMF-Placer automatically detects the macros in design
netlist and generates virtual LUTs/FFs/MUXs to occupy re-
sources and meet internal routing constraints. There are some
other minor macros defined by vendor primitives [3], which
are out of the scope of this work. More details are available
in the device documentations [16]–[18].

B. Problem Formulation

The placement of the instances in a FPGA-based design can
be formulated as a hypergraph H = (V,E) placement prob-
lem. Let vertices V = {v1, v2, . . . , vn} represent n instances
in the design netlist and hyperedges E = {e1, e2, . . . , em}
represent m nets. Let xi and yi be the x and y coordinates of
the center of the instance vi during placement, respectively.
As mentioned in Section I-A, the instances can be categorized
into two types, i.e., standard cells and macros, and both of
these two types could be movable or fixed according to the
design constraints. The most common objective function for
placement is the sum of half-perimeter wirelength (HPWL)
over all nets, i.e., the defined E. The FPGA mixed-size placer
should determine the position of each movable instance (i.e.,
xi and yi) so that the total HPWL of the nets is minimized
under the technology and region constraints.

C. The Framework of AMF-Placer

The workflow of AMF-Placer is shown in Fig. 3. The input
of AMF-Placer is the pre-implementation netlist extracted
from Xilinx Vivado and the output is the location of each
instance on the specific device. The proposed placement
consists of 7 phases as follows:

1) Initial Placement: Different from previous FPGA an-
alytical placers, which start from random placement of in-
stances, AMF-Placer starts from the initial placement gen-
erated by the SA-based placement of the instance clusters,
utilizing the random factors in SA to overcome the limitation
of analytical placers.

2) Quadratic Placement: For each instance, its next loca-
tion will be determined by solving a quadratic optimization
problem of HPWL, for wirelength minimization. To handle
mixed-size placement, interconnection density and legalization
are considered in quadratic placement with proposed adaptive
pseudo net weights and pseudo nets for legalization.

3) Cell Spreading: Based on the area demand of instances
and the area supply of the devices, the instances will be spread
from the regions where demand for resources is outrunning
supply, to other regions. It realizes the goal of rough legal-
ization of fine-grained instances. To handle macros spanning
large regions, a set of new techniques are involved.

Xilinx Vivado
Pre-implementation Netlist

SA-based
Initial Placement

Quadratic Placement

Cell Spreading

Incremental Packing

Final
Packing

only once

Global Placement Iterations

Xilinx Vivado
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Resource Demand/Supply Adjustment

① ②

Fig. 3. The Outline of AMF-Placer’s Workflow with 7 Process Phases: Label
1 indicates lower-bound placement and label 2 indicates upper-bound placer.

4) Resource Demand/Supply Adjustment: Based on the
packing feasibility and routing congestion level, the area
demand of some standard cells like LUTs and FFs will shrink
or increase and the area supply of some regions will be
increased or reduced, to improve the placement quality.

5) Progressive Macro Legalization: In our proposed flow
for FPGA mixed-size placement, each macro will be mapped
to multiple potential locations or one exact location according
to the confidence. Moreover, anchors will be set to those loca-
tions for the macro and pseudo nets will be inserted between
the macro and the anchors to facilitate the convergence.

6) Incremental Packing: During the global placement, at
the fine-grained level, some LUTs and FFs will be paired as
LUT-FF macros and FF-FF macros to shrink the problem size
and improve the placement quality by identifying CLB internal
nets at early stage.

7) Final Packing: After the global placement iterations,
each instance will be mapped to sites, each of which consists
of fixed number and types of resource, as final legalization
or detailed placement. For example, LUTs, FFs, MUXs and
CARRYs should be mapped to CLB.

The pairing algorithm in incremental packing is adopted
from RippleFPGA [9]. Mechanisms of resource demand/sup-
ply adjustment and final packing are adopted from extended
UTPlaceF [19], with modifications to support mixed-size
placement.

As shown in Fig. 3, quadratic placement will generate
lower-bound placement with lower HPWL (i.e., HPWLlower).
Correspondingly, the placement before quadratic placement
with higher HPWL (i.e., HPWLupper) is called upper-bound
placement. When difference between upper-bound placement
and lower-bound placement is close and macros are legalized
exactly, the placement procedure will converge. All the re-
lated algorithms for these 7 phases are parallelized. Detailed
methodologies will be illustrated in the following sections.

III. IMPLEMENTATION OF AMF-PLACER

A. Initial Placement

In most of the previous FPGA analytical placers, the initial
placement is generated randomly, since it is claimed that
the analytical placers are usually insensitive to the initial
placement. However, most of them are evaluated on randomly
generated FPGA netlists [13] [14] or small designs [6].

On FPGA, the resources are separated into discrete regions
and the resource supply for each type of resource is not



even on the overall device. In the analytical models for these
scenarios, the existences of local energy minima are obvious
and this is a common limitation of analytical solutions.

Therefore, to overcome the limitation of existing analytical
solutions, we proposed SA-based cluster-level initial place-
ment before global placement iterations. AMF-Placer first
recursively bi-partitions the input netlist H into clusters C =
{c1, c2, . . . , cn}, each of which consists of at most NCsize

standard cells (including those in macros), based on PaToH
[20], which can achieve runtime complexity of nearly O(m).
Since the partitioning procedures of the separated clusters
are independent, they can be assigned to different threads
to speed up the overall partitioning procedure. Moreover, we
also set resource constraints, e.g., the number of DSPs, for
the clusters to ensure each of them will not lead to serious
resource overflow after initial placement. Meanwhile, we adopt
the clock-aware partitioning criteria from [21] to generate a
clock-friendly initial placement.

After partitioning, the FPGA device will be evenly divided
into a grid of NCY × NCX bins BC = {BCij}. For AMF-
Placer, NCY and NCX are empirically set to be 8 and 5.
Simulated-annealing (SA) algorithm is used to lower the cost
function by randomly assigning the clusters to the bins and
swapping them. Assuming all the instances in a cluster will
be placed at the center of the bin where the cluster is assigned,
the cost function Fcost, consisting of the terms for wirelength
and instance density, is defined as follows:

Fcost =
∑
e∈E

We +
∑

BCij∈BC

Of(BCij) (1)

Of(BCij) =
(WB +HB)(

∑
c∈BCij

size(c))2

NCsize
(2)

where We is the HPWL of net e and Of(BCij) is the resource
overflow function of the bin BCij since multiple clusters could
be assigned to it. WB and HB are the width and height
of a cluster bin. With random factors, instances can realize
movement in a wide range and the limitations of resource
supply constraints, which might trap instances in local optima,
can be overcome. Furthermore, to enlarge the search space
of the algorithm, the SA procedure will run multiple times
with different random start points. These SA procedures with
different start points can be parallelized as well.

B. Quadratic Placement
As mentioned in Section I-A, analytical placers approxi-

mate the wirelength (or HPWL) and some other metrics in
numerical models for efficient solutions. In this paper, like
what many previous analytical placers [6] [8] [9] [22] [19]
did, to approximate the underivable HPWL function,

W (x,y) =
∑
e∈E

We =
∑
e∈E

(max
i,j∈e

|xi−xj |+max
i,j∈e

|yi−yj |), (3)

AMF-Placer use weighted quadratic objective function W̃e, as
follows:

W̃e =
∑
i,j∈e

[wB2B
x,ij (xi − xj)2 + wB2B

y,ij (yi − yj)2], (4)

where wB2B
x,ij and wB2B

y,ij are weights set according to
Bound2Bound net model [23]. Then, we can formulate the
global placement problem for wirelength minimization as a
constrained minimization problem as follows:

min
x,y

∑
e∈E

W̃e

s.t. xi, yi is legal for the type of instance vi
(5)

Here, a location of an instance is legal when there are enough
specific resources for the type of the instance at that location.
To make this constrained problem solvable by a quadratic
solver, virtual anchors are added to the model. These virtual
anchors will be connected to their corresponding instances
with artificial two-pin pseudo nets to guide the instances to
the legal locations. Moreover, the values of wB2B

x,ij and wB2B
y,ij

are determined by the current overall placement, i.e., x and
y. If the placement gets significant change, W̃e might poorly
approximate the actual HPWL. Therefore, pseudo nets can
limit the movement of instances so the placer can update wB2B

x,ij

and wB2B
y,ij between quadratic placement iterations. Finally, the

problem can transform into one without constraints:

min
x,y

∑
e∈E

W̃e +
∑

ep∈Ep

[wepW̃ep ] (6)

where Ep = {ep} is the set of pseudo nets, wep is the extra
specific weight for pseudo net and W̃ep is the HPWL quadratic
approximation of ep. An example in Fig. 4 shows that an
instance could connect to multiple pseudo nets. The greater
wep is, the more closely the instance can move around from
the anchors when solving the quadratic problem.

The insertion of pseudo nets and their weights wep can
significantly impact the quality and runtime of placement.
In [9], [22], [24] and [11], there are only pseudo nets in-
terconnecting instances with their locations in last quadratic
placement iteration, i.e., the red dash lines in Fig. 4.

First, since available sites for the legalization of large
macros without overlap are sparse on FPGA, simply consid-
ering wirelength minimization without legalization objective
during quadratic program will worsen the wirelength after
final legalization. To facilitate macro legalization in mixed-
size placement, AMF-Placer inserts additional pseudo nets
interconnecting instances with their several potential legal
locations. The way to find these locations and the reason why
the additional pseudo nets help are explained in Section III-D.

Second, in previous works, the weight wep of a pseudo net
is calculated by dividing a global factor α by the movement
distance of the corresponding instance in last optimization

w01

w12

w02

Instance 0

Instance 1

Instance 2

Location in Opt Iteration

Pseudo Net (W’1)

A legal location

Pseudo Net (W’2)

Fig. 4. An Example of Pseudo Nets and Anchors: the dash lines indicate
pseudo nets and the triangles represent anchors.



iteration, like in Eqn.7. By gradually increasing the value of
α, the global placement will tend to converge.

wep,vi
= α/movement(vi) ( [9], [22] [24] and [11]) (7)

wep,vi
= α/movement(vi)× pinNum(vi) (ours) (8)

However, considering macros, a wide range of movements of
instances connecting to many nets will lead to serious distor-
tion of the wirelength estimation in Eqn. 4. This will make
the placement convergence procedure highly unstable when
there are a large number of macros in the design. Therefore,
AMF-Placer adds an extra multiplier factor for each pseudo
net, which is the number of external pins for the correspond-
ing instance, as shown in Eqn.8. With such interconnection-
density-aware setting, the macros will be moved slower than
the other smaller instances and have heavier gravity toward
their potential legal positions, facilitating faster convergence
to lower HPWL. Finally, the Eigen3 solver [25] is adopted
to handle the optimization in Eqn.6 with the high parallelism
based on OpenMP.

C. Cell Spreading
For a specific region on FPGA, the available resources

of various types are limited. Therefore, the instances should
be spread from the regions where demand for resources is
outrunning supply, to other regions, as rough legalization.
The fundamental cell spreading algorithm of AMF-Placer is
based on widely adopted bi-partitioning rough legalization
[4] [6] [9] [22] [26] [11]. During cell spreading, the FPGA
device will be evenly divided into a grid of NY × NX bins
B = {Bij}. The placer will find an overflowed bin, expand it
into a corresponding larger window containing it, recursively
partition the window, and spread the instances into bins in the
window.

However, as mentioned in Section II-A, macros might
require high density of resource, span multiple sites and share

Algorithm 1: AMF-Placer Cell Spreading
Input: instance locations in lower-bound placement

PL = {(xLi , y
L
i )}, instance locations in last

upper-bound placement PU = {(xUi , y
U
i )}, forgetting

rate γ
Output: instance locations in new upper-bound placement

PU′
= {(xU

′
i , yU

′
i )}

1 OFBins = findAndSortOverflowBins(PL);
2 OFCells = cells in OFBins;
3 resetOverflowTimes(OFBins);
4 while size(OFCells) > θof do
5 updateOverflowTimes(OFBins);
6 injectSupplyFluctuation(OFBins);
7 nonOverlapWins =

greedilyFindNonOverlapWindow(OFBins);
8 parallel foreach Win in nonOverlapWins do
9 P′

cell = cellSpreading(Win); // update locally

10 P′ = updateMacroLocation(P′
cell);

11 PU′
= updateLBPlacementWithγ(P′);

12 OFBins = findAndSortOverflowBins(PU′
);

13 OFCells = cells in OFBins;

14 adjustResourceDemandSupply();

Assume that each bin can 
contain 3 cells and there is a 
macro with 5 cells:

Cell Spreading
Iteration 2

new overflow

overflow
(again)

Cell Spreading
Iteration 1

Fig. 5. An Example of Cell Spreading Deadlock of Macro

CLB sites with standard cells, so AMF-Placer includes new
methods to handle such mixed-size spreading, as illustrated in
Algorithm 1. Details are explained as follows.

As shown in Fig. 5, macros might cause deadlocks in the
common partitioning-based cell spreading algorithm because
moving a macro spanning multiple bins from an overflowed
region might cause new overflows in other regions. AMF-
Placer’s solution is to inject resource fluctuation to those
bins trapped in deadlocks(line 5 and 6 in Algorithm 1), i.e.,
periodically reduce and recover the resource supply of those
bins, and squeeze out some instances from them. The extent
of supply fluctuation for a bin is proportional to the number
of times the bin gets overflowed. The fluctuation will stop
immediately when there is no overflow.

To find a minimal rectangular window for spreading from an
overflowed bin, [26] conducted an enumeration search, which
could be time-consuming, while [9] expanded the window
from the overflowed bin with a pre-determined expanding
pattern, which might lead to unnecessary window expanding
and undermine wirelength. In contrast, AMF-Placer will iter-
atively expand the window. For each expanding iteration, it
will first check the resource utilization of the neighbor bins in
four directions. Then, to expand the window, it will select the
direction, where the neighbor bins have the lowest utilization
compared to the other directions (line 7 in in Algorithm 1).
This iterative procedure for an overflowed bin will continue
until the window covers enough resource.

To enable parallelized cell spreading, AMF-Placer will sort
the overflowed bins according to their resource utilization.
Those bins with higher utilization will have higher priority to
find their spreading regions. During the speading window ex-
panding for an overflowed bin, the bins in the window will be
colored. The later window expanding for the other overflowed
bins cannot cover the colored bins. The obtained windows
will not overlap with each others and can conduct standard-
cell-level spreading concurrently (line 8 in Algorithm 1).

For a rectangular cell spreading window for an overflowed
bin with sufficient resources, [4] and [11] required it to
completely cover the macros inside it, which will lead to over-
spreading and high HPWL when there are many large macros
close to each other. To solve this problem, as inspired by ASIC
mixed-size placer [27], AMF-Placer conducts two-phase cell
spreading:

• In the first phase, standard cells in macros will be released
from the shape constraints and spread with the other
common standard cells to resolve the resource overflow.

• In the second phase, a macro’s location will be updated
to the average location of the standard cells in it.

By iteratively involving the two phases (line 9-10 in Algo-



rithm 1), resource overflows will be gradually resolved.
Finally, the partitioning-based cell spreading algorithm is

sensitive to the overflow. When a placement is compact, a
single overflowed bin could cause cell spreading in a large
region and seriously increase wirelength. Therefore, instead
of directly updating instance location, we keep the location
of an instance vi in last upper-bound placement as (xUi , y

U
i ).

During cell spreading, when the instance is expected to spread
to the location (x′i, y

′
i), the actual updated location will be set

to:
(γx′i + (1− γ)xUi , γy

′
i + (1− γ)yUi )

where γ is forgetting rate and set to be
(1 − 0.95× HPWLlower/HPWLupper) in AMF-Placer (line 11
in Algorithm 1). It can gradually depress the sensitivity of
cell spreading as the placement tends to converge.

After each cell spreading iteration, the resource demand
and supply will be adjusted according to packing and routing
feasibility [19].

D. Progressive Macro Legalization
As discussed in Section I-B, 1-to-1 legalization cannot

handle macro legalization. To solve this challenge of mixed-
size FPGA placement, we propose progressive macro legal-
ization for the 1-to-many legalization of a large number of
macros in AMF-Placer. AMF-Placer will only conduct rough
legalization in the early iterations of global placement, and it
will conduct exact legalization following rough legalization
when the macros are close enough to their potential legal
positions. The overall flow is shown in Algorithm 2.

Corresponding to line 1-14 in Algorithm 2, during rough
legalization of macros, the standard cells in the macros will be
released from the shape constraints and legalized individually.
According to a given displacement threshold θdisp, a set of
candidate sites Srs = {sr} will be found for each standard
cell in the macro (line 5 in Algorithm 2). A bipartite graph for
the mapping between standard cells and candidate sites will be
constructed (line 6 in Algorithm 2). In this bipartite graph, the
weight of an edge is the HPWL increase when the cell moves
to the corresponding candidate site indicated by the edge.
Then, min-cost bipartite matching will map each standard
cell to an FPGA site. As the macros spread over the device,
the bipartite graph might consist of multiple independent
connected subgraphs. Accordingly, the matching procedures
for these subgraphs can be fully parallelized (line 7-8 in
Algorithm 2). If there are some standard cells which cannot
match with site, θdisp will be increased by ∆θdisp to include
more unmatched candidate sites for the unmatched cells and
the matching algorithm will be rerun for them. θdisp will
be increased iteratively until all cells are matched. After the
matching, for each macro, a pseudo net will connect the macro
to the average location of the mapped sites of the standard
cells inside it (line 14 in Algorithm 2). In rough legalization,
standard cells in a macro are allowed to be mapped to different
columns. In the early stage of placement, the density of
instances is high and their locations are highly unstable. Mean-
while, macros consisting of DSPs, LUTRAMs, or BRAMs

Algorithm 2: Progressive Macro Legalization
Input: upper-bound placement PU = {(xUi , y

U
i )}, candidate

site number for each cell/macro Ncand, initial
displacement threshod θdisp I , threshold increment
∆θdisp and displacement threshold to enable exact
legalization θexact

Output: psuedo nets connected to legalization anchors for
macros ELegal

p = {eLegal
p }

1 unmappedCells = findUnmappedCellsInMacros();
2 cell2SiteRoughMap = ∅;
3 θdisp = θdisp I ;
4 while size(unmappedCells) > 0 do
5 cell2CandidateSiteMap =

findCandidateSites(unmappedCells, θdisp, Ncand);
6 BPGraphs = createIndependentBipartite-

Graphs(cell2CandidateSiteMap);
7 parallel foreach G in BPGraphs do
8 minCostBipartiteMatching(G);

9 updateRoughLegalization(cell2SiteRoughMap);
10 unmappedCells = findUnmappedCellsInMacros();
11 θdisp = θdisp + ∆θdisp;

12 avgDisp = checkAvgDisp(cell2SiteRoughMap);
13 if avgDisp > θexact then
14 ELegal

p = linkToAvgLoc(cellSiteRoughMap)

15 else
16 macro2ColumnMap = spreadMacrosToCols(PU )
17 parallel foreach col in Cols do
18 macros = getMacrosIn(col);
19 sortByY(macro);
20 macro2SiteExactMap = DPBasedLegalization(macro,

col);
21 ELegal

p = linkToExactLoc(macro2SiteExactMap);

are required to be mapped to the sparse legal regions and
some of them might span tens of sites. In this situation,
direct legalization [8] or cell spreading [9] for macros might
lead to serious displacement and trap the placement in bad
local optima. AMF-Placer’s solution gradually strengthens the
weights of the legalization pseudo nets, smoothly legalizes the
large macros, and preserves space for wirelength optimization.

As pseudo weights iteratively increase, the macros get closer
to the legal locations. If the average displacement from cells
to sites in rough legalization is lower than a threshold θexact,
exact (strict) legalization will follow the rough legalization
to ensure that the standard cells in a macro must be placed
in adjacent sites in the same column. The workflow of exact
legalization is demonstrated in line 16-21 in Algorithm 2. First,
the cell-spreading-based approach [9] is utilized to map the
macros to the resource columns, which provide resources of
the corresponding type (line 16 in Algorithm 2). For intra-
column legalization, suppose there are Nmacro, col macros
assigned to the column and Nsite, col sites in the column.
For macros in the column, they will be sorted according
to their y-coordinates. Then they will be assigned indices,
0, . . . , Nmacro,col − 1, from the bottom one to the top one.
By ensuring their order in the vertical direction is unchanged,
the intra-column macro legalization can be solved via dynamic



programming (DP):

f(i, j) =min(f(i− 1, j − row(i))

+ HPWL+(i, j − row(i) + 1), f(i, j − 1))
(9)

where f(i, j) represents the increase of HPWL to legalize the
0-i th macros in 0-j th rows of the column, row(i) represents
the number of adjacent rows which should be occuplied by
macro i, and HPWL+ denotes the HPWL increase when
macro i is placed from row j−row(i)+1 to row j, compared
to the placement before legalization. Variable i will iterate
from 0 to Nmacro,col − 1 and Variable j will iterate from
0 to Nsite,col − 1. Constraints and initial state settings for
Eqn.9 are not shown because of limited space. Since the
macros are close to their potential legal positions and the
placement tends to be stable at this stage, we assume that the
locations of the other instances will remain unchanged during
the intra-column legalization of macros. Therefore, the intra-
column legalization procedures for different columns can be
parallelized (line 17-21 in Algorithm 2).

E. Final Packing

For the final packing, a parallelized packing algorithm
with high quality has been proposed by [19]. It allows the
FPGA sites to search their corresponding candidate packing
solutions concurrently and then negotiate together during
synchronization. It handles exception instances that cannot be
packed during the parallel method with the sequential conven-
tional ripping-up algorithm. We adapt this high-performance
algorithm to our mixed-size placement scenarios with several
major modifications: (1) Some instances might be pre-packed
into CLB sites by the macro legalization, but these pre-packed
CLBs can be filled with other instances as long as the rules
described in Section II-A are obeyed; (2) We encode each
candidate packing cluster for a specific site with hash function
to avoid many redundant packing attempts to improve perfor-
mance and quality of packing; (3) By iteratively increasing the
ripping-up window size and processing independent exception
instances concurrently, we also parallelize the exception han-
dling algorithm and achieve further acceleration.

IV. EXPERIMENTAL RESULTS

A. Target Device, Benchmarks and Environment

Currently, AMF-Placer targets at Xilinx VU095 FPGA
devices. We collect the latest large open-source benchmarks
which are suitable for VU095 device and designed for various
domains, including CNN [28], memory networks [29], LSTM
[30], SoC [31], NoC [32], and genetic encode alignment
[15]. Their parameters are listed in Table I, where we use
macroRatio, the quotient of the total number of sites required
by macros and the total number of sites required by all
instances, to indicate the macro proportion of the design.
Some of the benchmarks are generated via high-level synthesis
[33] while the others are described in Verilog. Some of them
contain commercial IP cores. These IP cores are black-box
instances in the post-synthesis netlist and cannot be handled
by RapidWright [34] and other placers relying on the EDIF

TABLE I: BENCHMARK PARAMETERS

Benchmarks
Rosetta

FaceDetection SpooNN OptimSoC MiniMap2 OpenPiton MemN2N BLSTM
Rosetta

DigitRecog
#LUT 68945 63095 186183 407586 180388 184997 118967 151636
#FF 56987 70987 248983 252624 111966 84694 54690 105580

#CARRY 4978 2091 1715 19826 1712 11528 2762 1970
#Mux 2177 217 27037 180 13696 4466 36210 4662

#LUTRAM 255 251 901 251 752 3500 1147 251
#DSP 101 165 51 528 58 312 258 1

#BRAM 141 208 218 283 147 148 812 379
#Cell 134450 137937 468150 681889 309145 289721 215101 265775

#Macro 3582 1135 21882 8746 8278 5775 14651 3061
#siteForMacro 55666 23079 89004 191263 48066 118960 171822 55754

MacroRatio 40% 16% 19% 28% 15% 41% 80% 21%

(Electronic Design Interchange Format) netlists exported from
commercial tools. To overcome this limitation, AMF-Placer
directly extracts the instance interconnection from Vivado via
interactive Tcl commands, to handle general designs. AMF-
Placer is implemented in C++ and experiments are conducted
on Ubuntu 20.04 with Intel i7-6770 CPU (3.40 GHz, 8 logic
cores) and 32GB DDR4. Due to the license restriction of the
Vivado patch in ISPD 2015/2016 contests, we cannot utilize
the patch to get the routed wirelength from Vivado and we
use HPWL to approximate the final routed wirelength.

B. Effectiveness of Proposed Optimization Techniques

In this subsection, we evaluate the impact of the proposed
optimizations for different placement phases. Here we show
their impact by disabling different specified optimization tech-
nique and these techniques include:
• Tech1: SA-based initial placement
• Tech2: interconnection-density-aware pseudo net weight
• Tech3: utilization-guided search of spreading window
• Tech4: forgetting-rate-based cell spreading update
• Tech5: progressive macro legalization

Since existing open-source analytical FPGA placers do
not support mixed-size FPGA placement of aforementioned
macros on Ultrascale devices, for comprehensive comparison,
according to some state-of-the-art solutions, we implement
baseline placement solution with the following features:
• quadratic placement, cell spreading and clock region

planning algorithms from RippleFPGA [9] and clock-
aware initial clustering from [21].

• resource demand adjustment and packing algorithms from
extended UTPlaceF [19]

• SA initial placement
• necessary modifications to support macro placement, e.g.,

macro legalization/packing, but without Tech2-5
• parallelized
The experimental results are shown in Table II. Our pro-

posed solution achieves the best HPWL compared to other
configurations. Compared to baseline, AMF-Placer can im-
prove HPWL by 20.4%-89.3% and reduce runtime by 8.0%-
84.2%. Results of experiments without Tech1 show a good
initial placement is crucial for analytical placement, especially
for designs with clear hierarchy like OptimSoC [31] and
OpenPiton [32]. Therefore, we also enable SA-based initial
placement for the baseline since we think it should be a
necessary process. The experiments without Tech2 or Tech3
indicate that utilization-guided search of spreading window



TABLE II: COMPARISON OF RUNTIME AND HPWL WITH VARIOUS BENCHMARKS AND CONFIGURATION

Rosetta FaceDetect [33] SpooNN [28] OptimSoc [31] MiniMap2 [15]
HPWL Rhpwl time(s) Rtime HPWL Rhpwl time(s) Rtime HPWL Rhpwl time(s) Rtime HPWL Rhpwl time(s) Rtime

proposed 446908 1.000 105 1.054 339764 1.000 129 1.000 1771538 1.000 466 1.000 1275346 1.000 558 1.000
w/o Tech1 479221 1.072 109 1.088 360567 1.061 132 1.023 9034564 5.100 871 1.870 5132073 4.024 1265 2.266
w/o Tech2 465208 1.041 131 1.315 491385 1.446 517 4.007 1841786 1.040 577 1.239 1790566 1.404 1019 1.826
w/o Tech3 487060 1.090 124 1.238 431386 1.270 240 1.857 1825819 1.031 543 1.164 1307249 1.025 626 1.121
w/o Tech4 450199 1.007 100 1.000 351649 1.035 131 1.015 2658863 1.501 525 1.126 1291565 1.013 561 1.005
w/o Tech5 511514 1.145 134 1.344 443765 1.306 138 1.067 1880431 1.061 546 1.172 1430330 1.122 708 1.268
baseline 794201 1.777 234 2.338 1865746 5.491 329 2.549 2231978 1.260 559 1.199 11886747 9.320 3539 6.339

OpenPiton [32] Rosetta DigitRecog [33] MemN2N [29] BLSTM [30]
proposed 1139189 1.000 283 1.035 726929 1.000 254 1.097 801403 1.000 318 1.130 484650 1.000 326 1.241

w/o Tech1 6218009 5.458 350 1.280 768796 1.058 256 1.105 963416 1.202 363 1.287 492194 1.016 285 1.083
w/o Tech2 1159003 1.017 326 1.190 730071 1.004 321 1.389 916176 1.143 411 1.460 496540 1.025 364 1.383
w/o Tech3 1157479 1.016 296 1.079 773957 1.065 272 1.174 862212 1.076 343 1.216 511861 1.056 296 1.126
w/o Tech4 1212149 1.064 274 1.000 728094 1.002 231 1.000 822742 1.027 282 1.000 653010 1.347 307 1.169
w/o Tech5 1142927 1.003 301 1.098 997207 1.372 244 1.053 923670 1.153 353 1.252 722495 1.491 263 1.000
baseline 1432535 1.258 297 1.086 1047885 1.442 298 1.288 1610425 2.010 547 1.942 907383 1.872 325 1.237

TABLE III: ACCELERATION RATIOS WITH PARALLELISM

Rosetta
FaceDetect SpooNN OptimSoC MiniMap2 OpenPiton

Rosetta
DigitRecog MemN2N BLSTM

8 threads 2.17x 2.07x 2.50x 2.86x 2.63x 2.22x 2.61x 2.23x
4 threads 2.01x 1.96x 2.29x 2.57x 2.37x 2.04x 2.35x 1.97x
2 threads 1.56x 1.52x 1.64x 1.81x 1.65x 1.54x 1.68x 1.77x
1 threads 1.00x 1.00x 1.00x 1.00x 1.00x 1.00x 1.00x 1.00x

and proposed pseudo net weight settings can improve the
quality and runtime of placement. The experiments without
Tech4 can sometime achieve faster convergence by directly
updating cells’ locations in cell spreading, which might worsen
HPWL when the placement is compact. Compared to the slight
overhead of runtime, the advantage of Tech4 is considerable.
Moreover, the experiments without Tech5 show that replacing
progressive macro legalization with direct macro legalization
[19] will undermine final wirelength, especially for SpooNN
[28] and BLSTM [30], where there are many large BRAM
macros. Finally, according to the experiments, the overall
impact of the combination of the proposed techniques is
noticeable. For example, in baseline, without Tech3, larger
windows will be used to spread instances. In this situation,
direct update of placement without Tech4 will further increase
the wirelength which can lead to large displacements of
macros during legalization without Tech5. This is a vicious
circle. Even worse, this bad global placement will make par-
allelized packing difficult and cause long runtime of packing.

As indicated in Section III, the dominant algorithm for each
stage in the proposed placement flow can be parallelized and
in Table III, acceleration ratios are demonstrated by changing
the number of threads and evaluating placement runtime. Aver-
agely, with 8 threads, 4 threads, and 2 threads, the placement
can be accelerated by 2.41x, 2.20x and 1.64x respectively,
compared to the single-thread placement. The marginal benefit
of parallelism decreases as the thread number increases. The
major reason is that the global placement iterations take up
most of the runtime, and during cell spreading in global
placement, as most of the overflowed regions are processed,
the number of spreading windows, in line 8 of Algorithm 1,
will decrease fast. As result, the space for parallelism will be
limited if the number of threads is already large.

C. Portability to Commercial Tools

Placement generated by AMF-Placer can be loaded into
Vivado to perform routing. All the placement generated from
proposed placement flow can be successfully routed. However,
we cannot get the routed wirelength from Vivado because of
the license restriction of the Vivado patch in ISPD 2015/2016

(a) MiniMap2 (b) BLSTM
Fig. 6. Comparison of AMF-Placer Placement (upper ones) and Vivado
Placement (lower ones): yellow for CARRY macros, red for MUX macros,
green for BRAM macros, purple for DSP macros, blue for LUTRAM macros.
The view of device is rotated left by 90°.

contests. The placement of the largest benchmark, MiniMap2
[15], and the benchmark with the highest macro ratio, BLSTM
[30], are shown in Fig. 6 as examples. Different types of
macros are highlighted in different colors. Due to limited
space, more detailed statistics are available in the open-source
project documentation. The difference of congestion extent
between Vivado and AMF-Placer is small. The slice utiliza-
tion of AMF-Placer is slightly higher than Vivado because
Vivado’s placement includes better floorplanning and utilizes
design hierarchy information. Moreover, since Vivado placer
is timing-driven while AMF-Placer is wirelength-driven, the
current WNS/TNS results of AMF-Placer are worse than the
Vivado placement results. Solutions to these problems will be
parts of our future works to extent AMF-Placer.

V. CONCLUSION

In this work, we propose AMF-Placer, an open-source
FPGA analytical placer supporting the FPGA mixed-size
placement. To speed up the convergence and improve the
quality for the mixed-size placement, AMF-Placer is equipped
with a series of new parallelizable optimization techniques
in quadratic placement, cell spreading, packing, and legal-
ization. Based on the latest large open-source designs from
various domains for Xilinx Ultrascale FPGAs, experimen-
tal results indicate that AMF-Placer can improve HPWL
by 20.4%-89.3% and reduce runtime by 8.0%-84.2%, com-
pared to the baseline. The source code and Wiki of AMF-
Placer and involved open-source benchmarks are available at
https://github.com/zslwyuan/AMF-Placer. We sincerely appre-
ciate the kindly suggestions from reviewers, detailed explana-
tions of UTPlaceF [19] from Dr. Wuxi Li, and useful advice
on Vivado metric usages from Dr. Stephen Yang [13].

https://github.com/zslwyuan/AMF-Placer
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[20] Ü. V. Çatalyürek and C. Aykanat, “Patoh (partitioning tool for hyper-
graphs),” in Encyclopedia of Parallel Computing. Springer, 2011, pp.
1479–1487.

[21] J. Chen, Z. Lin, Y.-C. Kuo, C.-C. Huang, Y.-W. Chang, S.-C. Chen,
C.-H. Chiang, and S.-Y. Kuo, “Clock-aware placement for large-scale
heterogeneous fpgas,” IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, vol. 39, no. 12, pp. 5042–5055, 2020.

[22] M.-C. Kim, D.-J. Lee, and I. L. Markov, “Simpl: An effective placement
algorithm,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 31, no. 1, pp. 50–60, 2011.

[23] P. Spindler, U. Schlichtmann, and F. M. Johannes, “Kraftwerk2a fast
force-directed quadratic placement approach using an accurate net
model,” IEEE Transactions on Computer-Aided Design of Integrated
Circuits and Systems, vol. 27, no. 8, pp. 1398–1411, 2008.

[24] T. Lin and C. Chu, “Polar 2.0: An effective routability-driven placer,” in
Proceedings of the 51st Annual Design Automation Conference, 2014,
pp. 1–6.

[25] G. Guennebaud, B. Jacob et al., “The eigen 3 c++ library,” 2010.
[26] T. Lin, C. Chu, and G. Wu, “Polar 3.0: An ultrafast global placement

engine,” in 2015 IEEE/ACM International Conference on Computer-
Aided Design (ICCAD), 2015, pp. 520–527.

[27] M.-C. Kim and I. L. Markov, “Complx: A competitive primal-dual
lagrange optimization for global placement,” in Proceedings of the 49th
Annual Design Automation Conference, 2012, pp. 747–752.

[28] K. Kara, “Spoonn: Fpga-based neural network inference library,” 2018.
[29] S. Sukhbaatar, A. Szlam, J. Weston, and R. Fergus, “End-to-end memory

networks,” arXiv preprint arXiv:1503.08895, 2015.
[30] V. Rybalkin, N. Wehn, M. R. Yousefi, and D. Stricker, “Hardware

architecture of bidirectional long short-term memory neural network for
optical character recognition,” in Design, Automation & Test in Europe
Conference & Exhibition (DATE), 2017. IEEE, 2017, pp. 1390–1395.

[31] S. Wallentowitz, P. Wagner, M. Tempelmeier, T. Wild, and A. Herk-
ersdorf, “Open tiled manycore system-on-chip,” arXiv preprint
arXiv:1304.5081, 2013.

[32] J. Balkind, M. McKeown, Y. Fu, T. Nguyen, Y. Zhou, A. Lavrov,
M. Shahrad, A. Fuchs, S. Payne, X. Liang et al., “Openpiton: An open
source manycore research framework,” ACM SIGPLAN Notices, vol. 51,
no. 4, pp. 217–232, 2016.

[33] Y. Zhou, U. Gupta, S. Dai, R. Zhao, N. Srivastava, H. Jin, J. Featherston,
Y.-H. Lai, G. Liu, G. A. Velasquez et al., “Rosetta: A realistic high-
level synthesis benchmark suite for software programmable fpgas,”
in Proceedings of the 2018 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, 2018, pp. 269–278.

[34] C. Lavin and A. Kaviani, “Rapidwright: Enabling custom crafted im-
plementations for fpgas,” in 2018 IEEE 26th Annual International Sym-
posium on Field-Programmable Custom Computing Machines (FCCM).
IEEE, 2018, pp. 133–140.

[35] Y. Zhou, D. Vercruyce, and D. Stroobandt, “Accelerating fpga
routing through algorithmic enhancements and connection-aware
parallelization,” ACM Trans. Reconfigurable Technol. Syst., vol. 13,
no. 4, Aug. 2020. [Online]. Available: https://doi.org/10.1145/3406959

https://doi.org/10.1145/3406959

