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Abstract—Rectilinear Steiner Minimum Tree (RSMT) is the
shortest way to interconnect a net’s n pins using rectilinear edges
only. Constructing the optimal RSMT is NP-complete and non-
trivial. In this work, we design a reinforcement learning based
algorithm called REST for RSMT construction. After training,
REST constructs RSMT of ≤ 0.36% length error on average for
nets with ≤ 50 pins. The average time needed for one net is
fewer than 1.9 ms, and is much faster than traditional heuristics
of similar quality. This is also the first successful attempt to solve
this problem using a machine learning approach.

I. INTRODUCTION

The rectilinear Steiner minimum tree (RSMT) problem is a
fundamental problem in electronic design automation (EDA)
and computer science. Consider the problem of interconnect-
ing n pins on a circuit board using rectilinear edges only,
or the problem of building perpendicular roads to connect n
cities. RSMT is the shortest possible solution one can come up
with. In the domain of EDA, RSMT construction is especially
important, and is used for net routing, wire length estimation,
etc. Despite its importance, the problem has been proven to
be NP-complete [1], and solving it optimally is non-trivial.

There have been lots of works studying RSMT construction
related problems. In practice, it is common to use rectilinear
minimum spanning tree (R-MST) to approximate RSMT, since
R-MST can be efficiently constructed in O(n log n) time [2].
It is even proven that the length of an R-MST is at most 1.5×
of the optimal RSMT length [3]. For heuristics, Kahng et al.
[4] devised an RSMT construction algorithm that computes an
R-MST first, and iteratively improves its quality. This is done
by constantly replacing bad edges with better ones. FLUTE
[5], on the other hand, adopts a look-up table approach, and
is the most efficient heuristic so far. They first solve all small
instances with degree ≤ 9, and build a look-up table. In actual
use, the small instances are solved directly by the look-up
table. Larger nets are first broken down into small nets that
can be handled by the look-up table. The solutions of the
small nets are then merged back to form that of the original
net. Besides, GeoSteiner [6] is an efficient optimal algorithm
that enumerates all possible full Steiner tree to form an RSMT.
It is proven that an optimal RSMT can always be found by
combining full Steiner trees only, which are Steiner trees with
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a special structure. The running time of GeoSteiner inevitably
goes to exponential.

As the study of machine learning evolves, researchers
are attempting to solve several hard combinatorial problems
using machine learning based methodologies. This kind of
approaches have shown several advantages over the traditional
heuristics, e.g., shorter time for development, superior quality
and speed for small to middle size instances. In [7], Vinyal et
al. proposed the pointer networks that enabled neural networks
to select elements from an input set to form the output. It is
demonstrated that this mechanism can be utilized to tackle
several combinatorial problems, in particular the NP-complete
travelling salesmen problem (TSP). Unlike the supervised
approach taken by the original pointer network method, Bello
et al. [8] used reinforcement learning to train their model.
Their method relieved the demand for massive training data,
and the performance is no longer limited by the quality of the
labels. Besides, Deudon et al. [9] replaced the RNN encoder
of the original pointer networks with the multi-head attention
encoder [10]. The advantage of the new encoder is that it treats
the input as an order-invariant set. These approaches give us
new ideas of solving hard combinatorial problems.

In this work, we adopt this new idea to construct RSMT.
We proposed Rectilinear Edge Sequence (RES) to represent an
RSMT, thus we call our method REST. We also designed an
actor-critic neural network model to produce RES, and trained
it using reinforcement learning. The negative length of the
RSMT constructed is used as reward to encourage the model
to find shorter solutions. The reward can also be redesigned
to cater other needs. The main contributions of this work is
as follows:

• To the best of our knowledge, this work is the first
successful attempt to solve RSMT construction using a
machine learning based method.

• Rectilinear edge sequence (RES) is proposed to encode an
RSMT solution to bridge the gap between machine learn-
ing output and RSMT structure. We show in section II-C
that it has some nice properties, making it suitable for
reinforcement learning.

• An actor-critic model is designed for RSMT construction.
After training, it yields solution with ≤ 0.36% error for
nets with ≤ 50 pins in ≤ 1.9 ms on average, which is
much faster than traditional heuristics of similar quality.
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(a) R-MST (b) RSMT

Fig. 1: Rectilinear Minimum Spanning Tree vs. RSMT

The rest of the paper is organized as follows. In section II,
we give a brief introduction of the problem, and discuss the
rectilinear edge sequence (RES). In section III, the architecture
of our actor-critic networks is introduced in detail. We discuss
the experiments and results in section IV. Lastly we draw a
conclusion in section V.

II. PRELIMINARY

A. RSMT the problem

The problem of constructing RSMT or rectilinear Steiner
minimum tree can be defined as follows. Given a set of points
V , construct a rectilinear tree T (U) connecting all points in
U of minimum L1 length, such that U is a superset of V
(V ⊆ U ). The points newly introduced in U are called Steiner
points. The Steiner points help to reuse some edges and reduce
the total tree length.

Take fig. 1 as an example. Given the 4 points in square, the
shortest way to interconnect them without introducing extra
Steiner points is by a rectilinear minimum spanning tree (R-
MST). The shortest tree length in L1 norm will be 14 as shown
in fig. 1a. However, by introducing extra Steiner points, some
edges can be reused, and a rectilinear Steiner minimum tree
(RSMT) with even shorter total length can be constructed.
Figure 1b illustrates such an RSMT of length 12. The two solid
dots are the Steiner points introduced in order to construct the
RSMT.

The problem of constructing RSMT for a random set of
points is known to be NP-complete, but Hanan [11] has proven
that an optimal RSMT can always be constructed on the Hanan
grid (fig. 2b). The Hanan grid of a set of points is formed by
drawing a horizontal line and a vertical line over each point
in the set.

B. Sequence to RSMT

Neural networks have always being good at generating
sequences, no matter it is generating a sentence or a visiting
order for the travelling salesman problem (TSP). In this work,
we will also use neural networks to produce sequences that
can be converted to RSMT. We name this kind of sequences
rectilinear edge sequence (RES).

For a given set of points V = {(x1, y1), ..., (xn, yn)},
an RES for V is a sequence of n − 1 index pairs
((v1, h1), ..., (vn−1, hn−1)) where vi, hi ∈ {1, ..., n} for i =
1, ..., n−1. Each pair in the RES will decide a rectilinear edge
that connects two points. The ith pair (vi, hi) will connect

1

2

3

4

(a) Indexes of the points (b) Hanan grid

(c) Another Solution (d) An Invalid RES

Fig. 2: Rectilinear Edge Sequence (RES) Explained.

the vthi point and the hthi point by drawing a vertical line
segment over the vthi point, and a horizontal line segment
over the hthi point. For example, suppose a given point set
is V = {(0, 2), (2, 5), (4, 0), (5, 4)}, which is the one shown
in fig. 1. The positions of the points and their indexes are
shown in fig. 2a. One possible RES for V will be res1 =
((3, 1), (2, 1), (4, 1)), which will give us the optimal RSMT
in fig. 1b. Besides, there can be multiple optimal RES for the
same set of points, for example res2 = ((2, 1), (2, 4), (3, 4))
representing the RSMT in fig. 2c is also optimal. Note
that the overlapping edges indicated by an RES are merged
automatically, with Steiner points created.

It is worth mentioning that an RES is not always optimal
and valid. Consider res3 = ((3, 1), (1, 3), (4, 3)), it suggests
the solution in fig. 2d. It is obviously not a valid solution to in-
terconnect all points. Therefore, we enforce two requirements
in theorem 1 to guarantee the validity of an RES.

Theorem 1. Suppose res = ((v1, h1), ...(vn−1, hn−1)) is
an RES for a point set V = {(x1, y1), ..., (xn, yn)}, if the
following 2 requirements are satisfied, res is guaranteed to be
valid, i.e. the solution defined by res is guaranteed to connect
all points in V : (1) v1 6= h1. (2) Exactly one of vi, hi is
visited before, for i = 2, ..., n − 1, i.e., exactly one of vi, hi
appeared in {h1, v1, ..., hi−1, vi−1}.

Proof. Let’s consider the sub-tree formed by the visited points.
In the first pair, we build a sub-tree with 2 distinct points
connected by a rectilinear edge. In each of the following
n − 2 pairs, we will attach a new point to the sub-tree
by a rectilinear edge. Thus, eventually all n points will be
visited and interconnected by the RES satisfying the two
requirements.

Theorem 2. For any point set V = {(x1, y1), ..., (xn, yn)},
we can always find an RES such that the tree it represents is
an optimal RSMT for V .
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Fig. 3: The horizontal and vertical segment over point i. The
left end x of its horizontal segment is lxi, and the right end
is rxi. The lower end y of its vertical segment is lyi, and the
higher end is hyi.

Theorem 2 ensures that an optimal RES always exists. This
is actually implied by the Hanan theory [11], which states that
an optimal RSMT can always be constructed on the Hanan
grid (fig. 2b). Given such an RSMT, we can break it into
n − 1 rectilinear edges on the Hanan grid, each connecting
two points in V . By picking an appropriate order, the edges
can be written as the n− 1 pairs of an RES.

C. Good Properties of RES
RES is not the only way to encode an RSMT solution, but

there are several good properties that make RES a good choice
for RSMT construction via reinforcement learning. The major
advantages of RES are as follows.

1) Fixed Length Sequence: Determining the number of
pairs to output is non-trivial for a neural network model.
Fortunately, this will not be a problem with RES, since the
length of the RES for any set of n points is always n− 1.

2) Linear Time Evaluation: In order to learn from experi-
ences, we need to evaluate the solutions obtained by the model
on the fly to generate reward. The reward in our case is the
negative of the total length. The evaluation process is often
the bottleneck of reinforcement learning, as it usually requires
lots of computations or even simulations. The RES can be
evaluated in linear time by finding the length of the horizontal
and vertical segments over each point. For each segment, we
will keep track of the positions of its two ends as illustrated
in fig. 3. The algorithm is summarized in algorithm 1.

Algorithm 1 RES Evaluation
Input: V = {(x1, y1), ..., (xn, yn)},

res = ((v1, h1), ..., (vn−1, hn−1))
Output: length

1: lxi ← xi, rxi ← xi, for i = 1, ..., n
2: lyi ← yi, hyi ← yi, for i = 1, ..., n
3: for i = 1 to n− 1 do
4: (v, h)← (vi, hi)
5: lyv ← min(lyv, yh), hyv ← max(hyv, yh)
6: lxh ← min(lxh, xv), rxh ← max(rxh, xv)
7: length←

∑n
i=1((hyi − lyi) + (rxi − lxi))

8: return length

III. NEURAL NETWORK MODEL

In this section we will introduce the neural network model
we designed for RSMT construction. Figure 4a summarizes

Points 𝑉 ∈ ℝ𝑛×2

Decoder

Encoder

RES 𝑟𝑒𝑠 ∈ ℤ+
(𝑛−1)×2

Encodings 𝐸 ∈ ℝ𝑛×128

Actor

Baseline 𝑏 ∈ ℝ

Critic

(a)

Multi-Head 
Attention

Feed Forward

Batch Norm

Batch Norm

𝐸𝑖−1

𝐸𝑖

+

+

Multi-Head 
Attention

Feed Forward

Batch Norm

Batch Norm

𝐸𝑖−1

𝐸𝑖

+

+

(b)

Fig. 4: (a) Simplified Structure of Our Neural Network Model;
(b) The ith Encoding Process.

our model in a simplified fashion. The model we use mainly
has two components - actor and critic. Both of them take a
set of n point coordinates V (V ∈ Rn×2) as input. The actor
will take several actions to determine the elements in the RES
according to a stochastic policy, i.e., each action is chosen
by different probabilities produced by the model. The critic
will set a baseline by predicting the expected length of the
RSMT found by the current actor, so that it encourages the
actor to constantly improve its performance. The general goal
is to increase the probability of generating good RES(s), and
decrease the probability of generating bad ones.

A. Encoder

As shown in fig. 4a, our encoder will take the points as
input, and produce a fixed-length encoding for each point. The
dimension of each encoding is d = 128 in our implementation.
The encodings for n points, e1, ..., en ∈ Rd, can be packed
in an encoding matrix E ∈ Rn×d (E = [e1, ..., en]

T ). The
reason to encode the points before RES generation is to create
better representations for the points. Before encoding, the
representation of each point is just its 2D coordinates. During
the encoding, the dimension is expanded to d by linear trans-
formation. The expanded representations of different points
will then exchange information for multiple rounds. The final
encoding of a point will therefore contain extra information
about its neighbors and the environment.

In practice, we implemented a modified multi-head attention
encoder [10] to serve as our encoder. The encoder takes the
2D coordinates of the points V ∈ Rn×2 (n is not fixed)
as input. It first expands the dimension of the points to get
the initial encodings by E0 = BatchNorm(VWemb), where
Wemb ∈ R2×d is a projection matrix that can be trained.
BatchNorm, a.k.a. batch normalization [12], will normalize
each value in the vectors across a mini-batch. Empirically, it
makes the training more stable and faster to converge.

This initial encoding is then processed by N = 3 identical
encoding processes, each of which is illustrated in fig. 4b. The
output of the ith process is Ei, and E = EN will be the final
output of the encoder. Each of the processes includes two sub-
layers - a multi-head attention layer and a feed forward layer.
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The merging arrows with + marks in fig. 4b indicate residual
connections [13], i.e. point-wise addition of two inputs. Batch
normalization is again used to stabilize the training.

To explain multi-head attention layer, let’s first look at the
single head attention,

SingleHead(Q,K,M) = softmax(
QKT

√
ds

)M

where Q,K,M ∈ Rn×ds (ds = 16), and softmax is a
function that normalize each row of its input into a probability
distribution that sum up to 1. The single head attention is
essentially a message passing process. We can imagine that
the ith row of M is the message held by the ith point. Assume
the result of this SingleHead is S ∈ Rn×ds , the ith row of S
is no more than a weighted sum of M ’s rows. That means
the information of different points are gathered to form a new
representation for point i. The weight is, however, decided by
Q and K.

The multi-head attention layer can then be defined as

MultiHead(Ei) = Concat(S1, ..., Sh)Wm

where Sj = SingleHead(EiWQ,j , EiWK,j , EiWM,j)

where h = 16 is the number of heads, Sj is the output of
the jth single head, and the Concat function concatenates h
n × ds matrices to form one n × hds matrix. Wm ∈ Rhds×d
and WQ,j ,WK,j ,WM,j ∈ Rd×ds are trainable parameters.

In addition, the feed forward layer applies the following
function to each row of the input matrix.

FeedForward(xT ) = max(0, xTW1 + bT1 )W2 + bT2

where xT (x ∈ Rd) is the input row, and W1 ∈ Rd×dh (dh =
512), b1 ∈ Rdh , W2 ∈ Rdh×d and b2 ∈ Rd are all parameters
that can be trained.

B. Decoder

The decoder takes the encodings E as inputs, and will
generate an RES satisfying the two requirements in theorem 1.
The decoder basically will decide the pairs in the RES
recurrently, i.e., the previously generated pairs will serve as
additional inputs for computing the next pair. The decoder
achieves this by producing a stochastic policy, or in another
word, computing the probability of generating different pairs
given the current state. The state consists of the point set V
and the existing partial RES.

More specifically, before generating any pairs, the decoder
will first select a point as the starting point u0 and mark it
as visited. In the following n − 1 steps, a new pair of the
RES will be generated at each step. At time step t, rather than
generating a pair (vt, ht) directly, the decoder will first select
an unvisited point ut, and then determine a visited point wt and
a boolean st simultaneously. If st = 0, (vt, ht) = (ut, wt); if
st = 1, the positions of ut and wt are swapped, and (vt, ht) =
(wt, ut). This intermediate step is introduced to guarantee that
exactly one of ht and vt is visited (as required by theorem 1).
Algorithm 2 provides the pseudo-code for our RES generation
algorithm.

Algorithm 2 RES Generation

Input: E = [e1, ..., en]
T

Output: res
1: res = ()
2: Select a starting point u0 and mark as visited
3: for t = 1 to n− 1 do
4: Select an unvisited point ut

5: Select a visited point wt and a boolean st
6: Mark ut as visited
7: if st = 0 then (vt, ht) = (ut, wt)
8: if st = 1 then (vt, ht) = (wt, ut)
9: Append (vt, ht) to res

10: return res

In order to decide u0, ut, wt and st for t = 1, ..., n−1, we
make use of a pointing mechanism first proposed in [7]. For
example, when we want to select a single unvisited point, the
pointing mechanism takes the encodings E = [e1, ..., en]

T and
a query vector q ∈ Rdq (dq = 360) as inputs, and output the
probability p ∈ Rn of selecting each point. The query vector is
used to differentiate between different states. The computation
behind the pointing mechanism is as follows.

p = PTM(E, q;φ) = softmax(C × tanh(l))

where l = [l1, l2, ..., ln−1, ln]
T ,

li =

{
−∞ if point i is visited
gTφ tanh(W

3
φei +W 4

φq) otherwise

where φ = {gφ ∈ Rdq ,W 3
φ ∈ Rdq×d,W 4

φ ∈ Rdq×dq} is a set
of trainable parameters. The vector l ∈ Rn are the logits for
selecting different points. The larger li is, the more likely point
i will be selected. The logits for visited points are reset to −∞
by a boolean mask to avoid being selected. The logit values are
next clipped by C× tanh(l) where C = 10, so that it will not
become so biased towards selecting some certain points and
get stuck in local minima easily. Lastly, the softmax function
converts the logits into a probability distribution.

Using this mechanism, the decoder will first compute the
probabilities of selecting each point as the starting point u0
(given point set V ) by

p(u0|V ) = PTM(E, 0;φ1) (1)

which means vector zero is used as the query vector, and the
parameter set φ1 is used for computation.

After having the starting point, the decoder will decide
(vt, ht) by deciding (ut, wt, st) at time step t = 1, ..., n − 1.
The decoder will first compute the probabilities of selecting
each point as ut (given the partial RES before t, or res(< t))
by

p(ut|V, res(< t)) = PTM(E, qt;φ2) (2)

where a different parameter set φ2 is used. The query vector qt
encoding the current state res(< t), is computed recursively
as follows,

edget =Wueut +Wwewt +Wvevt +Wheht

subtreet = max(subtreet−1,Wedgeedget)

qt = max(0, edget−1 + subtreet−1)

(3)
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where Wu,Ww,Wv,Wh ∈ Rdq×d and Wedge ∈ Rdq×dq are
trainable parameters. Vector edget is a representation of the tth

generated edge (pair). Note that it is not redundant to have both
(vt, ht) and (ut, wt) in the computation, as this can actually
help the model to differentiate the role of each participating
point. The representations of all edges until time step t are
aggregated by point-wise maximum to form a representation
of the existing sub-tree subtreet at time step t.

Next, a visited point wt and a boolean st are selected
simultaneously based on the existing partial RES and the ut
just selected by an extended pointing mechanism

p′ = EPTM(E, q′;φ3, φ4) = softmax(C × tanh(l′))

where l′ = [l′1,0, ..., l
′
n,0, l

′
1,1, ..., l

′
n,1]

T ,

l′i,s =


−∞ if point i is unvisited
gTφ3

tanh(W 3
φ3
ei +W 4

φ3
q′) else if s = 0

gTφ4
tanh(W 3

φ4
ei +W 4

φ4
q′) else if s = 1

The major difference is that EPTM will produce 2 × n
probabilities instead of n. Different parameter sets are used
to compute the logits for the case when s = 0 and s = 1. We
compute the probabilities of choosing each pair of wt and st
given V and res(< t) by

p(wt, st|V, res(< t), ut) = EPTM(E, q′t;φ3, φ4) (4)

The query vector for this purpose is obtained by adding the
knowledge of the ut just selected to eq. (3):

q′t = max(0, edget−1 + subtreet−1 +W5eut
)

where W5 ∈ Rdq×d is learned.
Note that we can use equation 1, 2 and 4 to compute the

probability of generating a specific RES given a point set V
and the actor parameter set θ by

pθ(res|V ) = pθ(u0|V )
n−1∏
t=1

pθ(ut|V )pθ(wt, st|ut, V )

This will be useful when updating the parameters, as we want
to increase the probability of generating good RES(s).

C. Critic and Parameters Update

The critic network is used to assist the learning process.
The critic tries to set a baseline by predicting the length of
the RSMT found by the actor. Assume that the actual length of
the RSMT constructed by the actor is L(V, res) (obtained by
algorithm 1) and the critic prediction is b(V ), we will judge
the performance of the actor for this specific point set using the
advantage value computed as a(V, res) = b(V ) − L(V, res).
This tells us how much the actor performs better than the
expectation.

The critic adopts the same encoder as the actor but with
different parameters, and will first encode the points into the
critic encodings E′ ∈ Rn×d. The baseline b(V ) will next be
computed as

glimpse(E′) = softmax(tanh(E′)g′)TE′

b(V ) = max(0, glimpse(E′)W6 + bT6 )W7 + b7

where g′ ∈ Rd, W6 ∈ Rd×dc (dc = 256), b6 ∈ Rdc ,
W7 ∈ Rdc×1 and b7 ∈ R are all learnable parameters.
The glimpse function will compute a weighted sum of the
encodings according to the weights softmax(tanh(E′)g′). It
is followed by two fully connected layers to yield the baseline
scalar.

So far we have introduced all the architectures of our neural
network model. In the following, we will discuss our method
to update the parameters of the actor θ and the parameters of
the critic ψ.

For a specific point set V , the expected advantage of the
RSMT generated by the actor is

J(θ|V ) =
∑
r∈R

(b(V )− L(V, r))pθ(r|V ) (5)

where R is the set of all valid RES. We use the REINFORCE
algorithm [14] to compute the gradient of eq. (5) as

∇θJ(θ|V ) =
∑
r∈R

(b(V )− L(V, r))∇θpθ(r|V )

=
∑
r∈R

(b(V )− L(V, r))(∇θ log pθ(r|V ))pθ(r|V )
(6)

In practice, we will draw B point sets V1, ..., VB and sample a
single RES for each set, i.e. ri ∼ pθ(res|Vi) for i = 1, ..., B.
We approximate the gradient in eq. (6) by Monte Carlo sam-
pling, i.e., using a single trial for each point set to approximate
the expectation, and take average to get the overall gradient,

∇θJ(θ) ≈
1

B

B∑
i=1

(b(Vi)− L(Vi, ri))∇θ log pθ(ri|Vi) (7)

We update the parameters of the actor using stochastic gradient
ascent.

On the other hand, we train the critic to predict the actual
length of the RSMT found by the actor, and minimize the
mean square error as follows.

Loss(ψ) =
1

B

B∑
i=1

||bψ(Vi)− L(Vi, resi)||22

We use stochastic gradient descent to update the parameters
of the critic.

IV. EXPERIMENT AND RESULTS

We implemented and trained REST with PyTorch and ran
our experiments on a 64-bit Linux machine with Intel Xeon
2.2GHz CPUs and an Nvidia Titan V GPU. We train the model
with random point sets from degree 3 to 50, and keep a set of
parameters, a.k.a. checkpoint, for each degree. The training for
degree n+1 will start after that of n, and will kick start using
the parameters learned for degree n. This will speed up the
training process, since the model trained with degree n nets is
already a fairly good solver for degree n+1. For each degree,
we will train the model for 40k iterations, and a mini-batch
of B point sets are fed into the model for each iteration. The
batch size varies for different degrees. We use a batch size of
B = 4096 for degree 3, and will halve that at degree 10, 20
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TABLE I: Average Percentage Errors (%)

Deg GeoSt R-MST BGA FLUTE REST FLUTE REST
(A = 3) (T = 1) (A = 18) (T = 8)

5 0.00 10.91 0.23 0.00 0.02 0.00 0.00
10 0.00 11.96 0.48 0.12 0.23 0.04 0.01
15 0.00 12.19 0.53 0.55 0.45 0.06 0.03
20 0.00 12.41 0.57 1.03 0.56 0.11 0.07
25 0.00 12.47 0.58 1.44 0.69 0.18 0.12
30 0.00 12.56 0.60 1.83 0.77 0.23 0.16
35 0.00 12.63 0.62 2.13 0.84 0.26 0.21
40 0.00 12.65 0.63 1.05 0.86 0.29 0.25
45 0.00 12.67 0.63 1.07 0.98 0.30 0.32
50 0.00 12.72 0.64 1.12 1.01 0.29 0.36

TABLE II: Time to Construct 10k RSMT for Each Degree (s)

Deg GeoSt R-MST BGA FLUTE REST FLUTE REST
(A=3) (T=1) (A = 18) (T = 8)

5 0.25 0.03 0.41 0.01 0.26 0.01 1.84
10 3.88 0.13 1.63 0.05 0.38 0.10 2.67
15 8.32 0.33 3.33 0.13 0.55 2.02 4.20
20 15.39 0.60 5.36 0.19 0.64 7.87 5.56
25 23.24 0.93 7.04 0.24 0.97 16.68 8.02
30 31.93 1.02 10.11 0.34 1.20 21.67 9.39
35 43.41 1.18 11.92 0.40 1.52 26.17 12.00
40 55.68 1.39 14.71 1.22 1.76 33.31 13.60
45 71.69 1.63 17.44 1.44 2.30 42.12 17.02
50 87.45 1.87 20.63 1.64 2.66 52.76 19.09

and 40 respectively. We use Adam optimizer [15] to train our
model with an initial learning rate of 2.5×10−4. The learning
rate will decay by 0.96 after the training of each degree.

When testing, we will greedily pick the action assigned with
the largest probability at each step to produce one RES for
each net. We use a batch size of 100k/degree for each degree
during testing. Besides, due to the stochastic nature of machine
learning based methods, it is possible to further improve the
quality by introducing variations. We found 8 transformations
that can provide such variations without changing the RSMT
solutions. The 8 transformations include rotating the point set
by 0, 90, 180 and 270 degrees, with or without the x and
y coordinates swapped. We utilize this feature by feeding T
(1 ≤ T ≤ 8) transformed versions into the model, and pick
the best solution.

We compare REST with GeoSteiner (optimal), an efficient
implementation of R-MST [16], BGA [4], FLUTE [5] with
default setting (A = 3) and the most accurate setting (A = 18)
as mentioned in their work. We test the algorithms on 10k
randomly generated point sets for each degree. We show the
results for every 5 degree in table I, and their runnings in
table II. REST is almost as fast as FLUTE (A = 3) when
choosing T = 1, and outperforms both BGA and FLUTE
(A = 18) w.r.t. both quality and speed by choosing T = 8.
The process that REST builds an RSMT for a degree 10 net
from scratch is illustrated in fig. 5. The solid point at time step
0 is the point chosen as the starting point. We also provide an
example solution for a degree 50 net in fig. 6.

Besides, we also test our model on the benchmarks of
ICCAD 2019 global routing contest [17] (ispd18 test{1-10},
ispd19 test{1-10}). We test 1.72 million nets having degree
3 to 100. We use the corresponding checkpoints for nets of
degree 3 to 50, and use the degree 50 checkpoint for degree
51 to 100. It takes our algorithm (T = 1) 66.60s to construct
all RSMTs, and the total length is just 1.008× optimal length.

t = 0 t = 1 t = 2 t = 3 t = 4

t = 5 t = 6 t = 7 t = 8 t = 9

Fig. 5: Building an RSMT for a Degree 10 Net by REST

Optimal length = 5.39 Neural(T = 1) length = 5.43

Fig. 6: Example Solution for a Degree 50 Net

V. CONCLUSIONS

In this work, we proposed REST, a machine learning based
algorithm for RSMT construction. We trained it using rein-
forcment learning. After training, REST produces competitive
RSMT solutions for small to medium size nets in terms of
both quality and running time.
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