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Introduction

Why 3D IC Liquid Cooling?
I Power is the number one problem in chip design
I 3D IC is promising for increasing computer performance
I But 3D IC worsens power problem by

I higher heat dissipation density
I larger thermal resistance from junction to ambient

I Microchannel-based liquid cooling is proposed as a solution
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(a) [Brunschwiler+, 3DIC’09] (b) [Dang+, TAP’10] (c) [Madhour+, ICEPT’12]

Challenges for 3D IC Liquid Cooling
I Hot downstream and cool upstream =⇒

large thermal gradient =⇒
reliability and timing issues

I limited channel diameter =⇒
high pumping requirement =⇒
overhead to whole system

I Limitations of previous work
I No considering thermal gradient
I Assuming unidirectional straight channels
I Assuming unrealistic constant-temperature heat source

 

 

Thermal Modeling

I Most existing models assume unidirectional straight channels
I 4-register model (4RM) in 3D-ICE [Sridhar+, TOC’14]

I Accurate
I Has been extended for flexible topology
I Slow

I We construct a fast 2-register model (2RM) for cooling network
Basics
I Divide channel layer into basic cells with a 2D grid

I Either solid (white/black, black reserved for TSV) or liquid (blue)
I Solve local pressure Pi and flow rate Qi ,j from a linear system

I Qi ,j = gfluid ,i ,j · (Pi − Pj) (gfluid ,i ,j: fluid conductance)
I

∑
j∈Ni

Qi ,j = 0 (Ni: neighboring cells, inlet/outlet)
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4RM Model
I Thermal cell = basic cell
I Solve temperature from a linear system considering three kinds of heat

transfer
I Solid-solid thermal conductance gss =

qi ,j
Ti−Tj

=
ksolid ·Ai ,j

li ,j

I Solid-liquid thermal conductance gsl =
qi ,j

Ti−Tj
= g∗sl ‖ g∗ss =

g∗sl·g∗ss
g∗sl+g∗ss

with
g∗sl = hconvAi ,j

I Liquid-liquid heat transfer qll = Cv ·
∑

j∈Ni
(Qj ,i · T ∗j ,i) = Cv

2 ·
∑

j∈Ni
(Qj ,i · Tj)
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Faster 2RM Model
I No conforming channel geometry =⇒ larger and fewer thermal cells =⇒

speed-up
I Important due to frequent simulation
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Thermal nodes
I In solid layers, m ×m basic cells = a thermal node
I In channel layers, m ×m basic cells = a solid thermal node + a liquid one

Heat transfer
I Solid-solid: only consider complete conducting paths
I Solid-liquid: project horizontal heat transfer to vertical direction
I Liquid-liquid: sum heat transfer over multiple channel connections

Problem Formulations

Decision variables
I Cooling network topology N
I System pressure drop Psys

Metrics
I Pumping power Wpump =

Psys·Qsys
η

I Qsys: system flow rate; η: efficiency term
I Thermal gradient ∆T = maxi(∆Ti)

I ∆Ti: range of node temperatures in i-th source layer
I Peak temperature Tmax

Design Rules
I TSV positions are at alternating basic cells in both dimensions
I Inlets and outlets can only occur at edges of channel layer
I At most one “continuous” inlet and outlet on each side

Problem 1: Pumping Power Minimization
min Wpump,

s.t. Psys ∈ R+, N ∈ N , Tmax ≤ T ∗max, ∆T ≤ ∆T ∗.
(1)

(N is the set of all legal cooling networks)
Problem 2: Thermal Gradient Minimization

min ∆T ,
s.t. Psys ∈ R+, N ∈ N , Tmax ≤ T ∗max, Wpump ≤W ∗

pump.
(2)

General considerations
∆T is most difficult to handle among all metrics (Wpump, ∆T and Tmax)
I Wpump vs. Tmax is a simple trade-off under a specific N
I Liquid cooling alleviates Tmax and worsens ∆T

Three inducing factors for ∆T
1. Temperature rise of coolant
2. Non-uniform power source distribution
3. Non-uniform channel distribution
Factor 3 can be used to compensate for factors 1 & 2

Pumping Power Minimization

The problem is divided into two levels:
I Inner: Psys is varied to minimize Wpump for a specific N , which evaluates N
I Outer: simulated annealing (SA) searches for a good N

Overall Flow of Pumping Power Minimization

Input: Ninit, ∆T ∗, T ∗max, stack description and floorplan files.
Output: N , Psys.

1: N ← Ninit;
2: while #iteration is within the limit do
3: Obtain neighboring network solution N ′;
4: W ′

pump ← EVALUATENETWORK (N ′, ∆T ∗, T ∗max);
5: N ← N ′ or not according to SA mechanism;
6: if W ′

pump converges then return N and Psys;
7: end while

Temperature vs. Pressure
I As Psys increases, Tmax decreases and finally becomes approximately constant
I ∆T = f (Psys) is either uni-modal or monotonically decreasing
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Network Evaluation
I Replace Wpump by Psys, as Wpump vs. Psys is monotonic for a specific N
I Ignore Tmax first, as it is easier to handle

I Step 1: solve the problem without constraint T ∗max
I Step 2: check Tmax and find optimal solution by binary search

Network Evaluation of Pumping Power Minimization

1: function EVALUATENETWORK(N , ∆T ∗, T ∗max)
2: Minimize Wpump s.t. ∆T ≤ ∆T ∗;
3: if ∆T > ∆T ∗ then
4: return +∞;
5: else if Tmax > T ∗max then
6: Minimize Wpump s.t. Tmax ≤ T ∗max;
7: if ∆T > ∆T ∗ or Tmax > T ∗max then
8: return +∞;
9: else

10: return Wpump;
11: end if
12: else
13: return Wpump;
14: end if
15: end function

I In step 1, by further substituting ∆T = f (Psys), Problem 1 becomes
single-variable:

min Psys,

s.t. Psys ∈ R+, f (Psys) ≤ ∆T ∗.
(3)

I Solve (3) by searching (with three probing points):
I If a feasible Psys exists, return optimal Psys
I Otherwise, return the Psys for minimum f (show the nonexistence of feasible

Psys)

 

10
2

10
4

10
6

10
8

10
0

10
1

10
2

10
3

∆𝑇 ሺ𝐾ሻ 

𝑃𝑠𝑦𝑠  ሺ𝑃𝑎ሻ 

∆𝑇1
∗ 

∆𝑇2
∗ 

𝑃1
∗ 𝑃2

∗ 
 

10
2

10
4

10
6

10
8

10
0

10
1

10
2

10
3

∆𝑇 ሺ𝐾ሻ 

𝑃𝑠𝑦𝑠  ሺ𝑃𝑎ሻ 

∆𝑇1
∗ 

∆𝑇2
∗ 

𝑃1
∗ 𝑃2

∗ 

Pumping Power Minimization

Tree-like Cooling Network
Hierarchical tree-like structure is simple and can balance cooling:
I Between upstream and downstream (factor 1)
I Among different trees (factor 2)
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Network Topology Optimization
I In stage 1, ∆T under a fixed Psys is used as cost function to accelerate
I In earlier stages, more rounds are performed to fully explore solution space
I Eight types of global flow directions are attempted

Stage # Step Size Objective Function Simulator Runtime for an Iteration
1 10 ∆T 2RM short
2 10 W ′

pump 2RM medium
3 2 W ′

pump 2RM medium
4 2 W ′

pump 4RM long

 

Thermal Gradient Minimization

Similar to solving pumping power minimization with some optimization
Network Evaluation
I Its simplified form becomes:

min f (Psys),

s.t. Psys ∈ R+, Psys ≤ P∗sys.
(4)

I Solving (4) is simpler:
I If P∗sys locates on falling side of f , it is optimal already
I Otherwise, adopt golden section search

Network Topology Optimization
Minimizing Wpump under a fixed Psys is unrelated to temperature and meaningless,
but minimizing ∆T under a fixed Psys is safe =⇒ speed-up
I Some iterations are evaluated by one simulation under a fixed Psys

I The original stage 1 is no longer needed
I Another stage with 4RM is affordable to replace the original stage 3

Stage # Step Size Objective Function Simulator Runtime for an Iteration
1 10 ∆T ′ 2RM short
2 10 ∆T ′ 4RM medium
3 2 ∆T ′ 4RM medium

Experimental Results

Faster 2RM Model
I 5 benchmarks, 40 network samples, 6 thermal cell sizes and 13 pressures
I Tree-like networks, 400µm thermal cells: 0.52% errors (compared to 4RM),

runtime reduced from 3.37s to 0.07s
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Pumping Power Minimization
I 40 min for cases 1-3 and 240 min for case 4
I 79.61% better than baseline (unidirectional straight channels)
I 16.35% better than 1st place in ICCAD 2015 Contest

Case # 1 2 3 4 5

Baseline

Psys (kPa) 12.98 6.23 7.85 9.71 N/A
Tmax (K ) 322 314 321 314 N/A
∆T (K ) 15.0 10.0 15.0 10.0 N/A

Wpump (mW ) 10.41 6.91 8.34 11.65 N/A
Manual Psys (kPa) 8.86 5.54 6.98 9.45 40.1

(1st place Tmax (K ) 357 336 328 336 338
in ICCAD ∆T (K ) 15.0 10.0 15.0 10.0 10.0
Contest) Wpump (mW ) 1.72 1.51 3.36 2.96 113.96

Ours

Psys (kPa) 8.72 5.13 5.81 8.27 40.10
Psystem (kPa) 358 336 337 335 338

∆T (K ) 15.00 10.0 15.0 10.00 10.00
Wpump (mW ) 1.66 1.37 1.90 2.68 113.96
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Thermal Gradient Minimization
I Constraint W ∗

pump on Wpump is set to 0.1% of die power
I 37.27% better than baseline

Case # 1 2 3 4 5

Baseline

Psys (kPa) 26.08 14.43 17.82 26.51 45.81
Tmax (K ) 316 309 316 308 338

Wpump (mW ) 42.0 37.0 43.0 43.4 148.2
∆T (K ) 8.75 5.42 11.42 4.76 26.48

Ours

Psys (kPa) 16.51 8.96 11.46 13.80 40.06
Tmax (K ) 338 319 327 321 338

Wpump (mW ) 5.67 5.66 6.56 4.16 113.80
∆T (K ) 5.54 3.81 7.12 3.87 9.64
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