Minimizing Thermal Gradient and Pumping Power in 3D IC Liquid Cooling Network Design

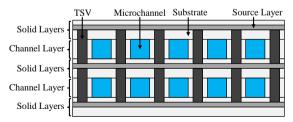
> Gengjie Chen, Jian Kuang, Zhiliang Zeng, Hang Zhang, Evangeline F. Y. Young, Bei Yu

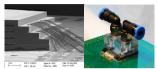
Department of Computer Science & Engineering The Chinese University of Hong Kong

June 21, 2017

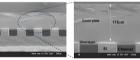
Why 3D IC Liquid Cooling?

- Power is the number one problem in chip design
- ► **3D IC** is promising for increasing computer performance
- But 3D IC worsens power problem by
 - higher heat dissipation density
 - larger thermal resistance from junction to ambient
- Microchannel-based liquid cooling is proposed as a solution





[Brunschwiler+, 3DIC'09]

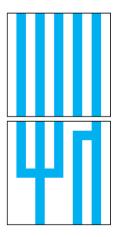


[Dang+, TAP'10]

[Madhour+, ICEPT'12]

Challenges for 3D IC Liquid Cooling

- ► Hot downstream and cool upstream ⇒ large thermal gradient ⇒ reliability and timing issues
- limited channel diameter ⇒
 high pumping requirement ⇒
 overhead to whole system
- Limitation of previous work
 - No considering thermal gradient
 - Assuming unidirectional straight channels
 - Assuming unrealistic constant-temperature heat source

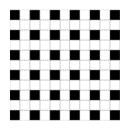


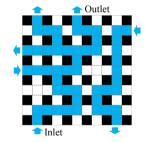
Thermal Modeling Background

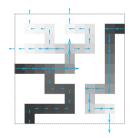
- Most existing models assume unidirectional straight channels
- ► 4-register model (4RM) in 3D-ICE [Sridhar+, TOC'14]
 - Accurate
 - Has been extended for flexible topology
 - Slow
- ▶ We construct a fast 2-register model (2RM) for cooling network

Thermal Modeling Basics

- Divide channel layer into basic cells with a 2D grid
- Solve local pressure and flow rate from a linear system

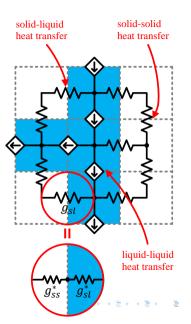






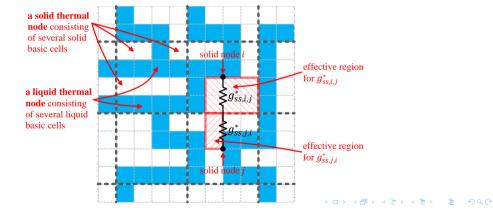
4RM Model

- ► Thermal cell = basic cell
- Solve temperature from a linear system considering three kinds of heat transfer
 - Solid-solid
 - Solid-liquid
 - Liquid-liquid



Faster 2RM Model

- \blacktriangleright No conforming channel geometry \implies larger and fewer thermal cells \implies speed-up
- \blacktriangleright In solid layers, $m\times m$ basic cells = a thermal node
- \blacktriangleright In channel layers, $m \times m$ basic cells = a solid thermal node + a liquid one



Problem Formulations

Decision variables

- Cooling network topology N
- System pressure drop P_{sys}

Metrics

- Pumping power $W_{pump} = \frac{P_{sys} \cdot Q_{sys}}{\eta}$
 - Q_{sys} : system flow rate; η : efficiency term
- Thermal gradient $\Delta T = \max_i (\Delta T_i)$
 - ΔT_i : range of node temperatures in *i*-th source layer
- **•** Peak temperature T_{max}

Problem Formulations

Problem 1: Pumping Power Minimization

min W_{pump} , s.t. $P_{sys} \in \mathbb{R}^+$, $N \in \mathcal{N}$, $T_{max} \leq T^*_{max}$, $\Delta T \leq \Delta T^*$. (1)

(\mathcal{N} : all legal cooling networks)

Problem 2: Thermal Gradient Minimization

min
$$\Delta T$$
,
s.t. $P_{sys} \in \mathbb{R}^+$, $N \in \mathcal{N}$, $T_{max} \leq T^*_{max}$, $W_{pump} \leq W^*_{pump}$. (2)

Design rules from ICCAD 2015 Contest

Pumping Power Minimization – Flow

Input: N_{init} , ΔT^* , T^*_{max} , stack description and floorplan files. **Output:** N, P_{sus} .

- 1: $N \leftarrow N_{init};$
- 2: while #iteration is within the limit do
- 3: Obtain neighboring network solution N';
- 4: $W'_{pump} \leftarrow \text{EvaluateNetwork} (N', \Delta T^*, T^*_{max});$
- 5: $N \leftarrow N'$ or not according to SA mechanism;
- 6: **if** W'_{pump} converges **then** return N and P_{sys} ;

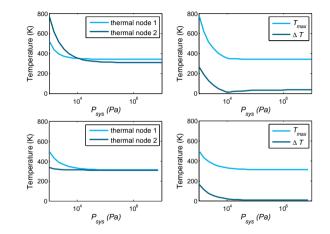
7: end while

The problem is divided into two levels:

- ▶ Inner: P_{sys} is varied to minimize W_{pump} for a specific N, which evaluates N
- Outer: simulated annealing (SA) searches for a good N

Pumping Power Minimization – Temperature vs. Pressure

- As P_{sys} increases, T_{max} decreases and finally becomes approximately constant
- ► ΔT = f(P_{sys}) is either uni-modal or monotonically decreasing



Pumping Power Minimization – Network Evaluation

- Replace W_{pump} by P_{sys}, as W_{pump} vs. P_{sys} is monotonic for a specific N
- ► Ignore T_{max} first, as it is easier to handle
 - Step 1: solve the problem without constraint T^{*}_{max}
 - Step 2: check T_{max} and find optimal solution by binary search

1: function EvaluateNetwork($N, \Delta T^*, T^*_{max}$) Minimize W_{pump} s.t. $\Delta T \leq \Delta T^*$; 2: 3. if $\Delta T > \Delta T^*$ then 4: return $+\infty$: else if $T_{max} > T^*_{max}$ then 5: Minimize W_{pump} s.t. $T_{max} \leq T^*_{max}$; 6: if $\Delta T > \Delta T^*$ or $T_{max} > T^*_{max}$ then 7: 8. return $+\infty$; 9: else return W_{pump} ; 10: end if 11: 12: else 13: return W_{pump} ; 14: end if 15: end function イロト 人間 トイヨト イヨ

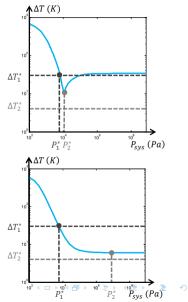
Pumping Power Minimization – Network Evaluation

In step 1, by further substituting $\Delta T = f(P_{sys})$, Problem 1 becomes single-variable:

min
$$P_{sys}$$
,
s.t. $P_{sys} \in \mathbb{R}^+$, $f(P_{sys}) \le \Delta T^*$. (3)

Solve (3) by searching (with three probing points):

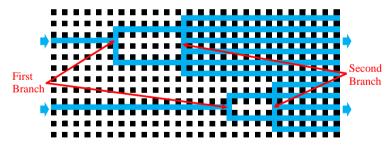
- If a feasible P_{sys} exists, return optimal P_{sys}
- Otherwise, return the P_{sys} for minimum f (show the nonexistence of feasible P_{sys})



Pumping Power Minimization – Tree-like Cooling Network

Hierarchical tree-like structure is simple and can balance cooling:

- Between upstream and downstream
- Among different trees



Pumping Power Minimization – Network Topology Optimization

Stage $\#$	Step Size	Objective Function	Simulator	Runtime for an Iteration
1	10	ΔT	2RM	short
2	10	W'_{pump}	2RM	medium
3	2	W'_{pump}	2RM	medium
4	2	W'_{pump}	4RM	long

- ▶ In stage 1, ΔT under a **fixed** P_{sys} is used as cost function to accelerate
- Eight types of global flow directions are attempted

Thermal Gradient Minimization – Network Evaluation

Problem for a specific N can be similarly solved:

Its simplified form becomes:

$$\begin{array}{ll} \mbox{min} & f(P_{sys}), \\ \mbox{s.t.} & P_{sys} \in \mathbb{R}^+, \ P_{sys} \leq P_{sys}^*, \end{array}$$

Solving (4) is simpler:

- If P_{sys}^* locates on falling side of f, it is optimal already
- Otherwise, adopt golden section search

(4)

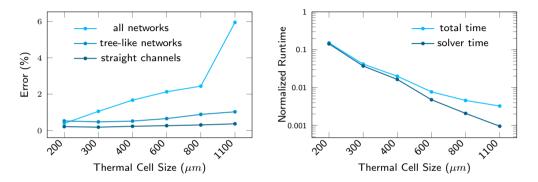
Thermal Gradient Minimization – Network Topology Optimization

Stage $\#$	Step Size	Objective Function	Simulator	Runtime for an Iteration
1	10	$\Delta T'$	2RM	short
2	10	$\Delta T'$	4RM	medium
3	2	$\Delta T'$	4RM	medium

Minimizing W_{pump} under a fixed P_{sys} is unrelated to temperature and meaningless, but minimizing ΔT under a fixed P_{sys} is safe \implies **speed-up**

- Some iterations are evaluated by one simulation under a fixed P_{sys}
- The original stage 1 is no longer needed

Experimental Results - Faster 2RM Model



- ▶ 5 benchmarks, 40 network samples, 6 thermal cell sizes and 13 pressures
- ► Tree-like networks, 400µm thermal cells: 0.52% errors (compared to 4RM), runtime reduced from 3.37s to 0.07s

Experimental Results – Pumping Power Minimization

	Case #	1	2	3	4	5
Baseline	$P_{sys} (kPa)$	12.98	6.23	7.85	9.71	N/A
	$T_{max}(K)$	322	314	321	314	N/A
	$\Delta T (K)$	15.0	10.0	15.0	10.0	N/A
	$W_{pump}(mW)$	10.41	6.91	8.34	11.65	N/A
Manual	$P_{sys}(kPa)$	8.86	5.54	6.98	9.45	40.1
(1st place	$T_{max}(K)$	357	336	328	336	338
in ICCAD	ΔT (K)	15.0	10.0	15.0	10.0	10.0
Contest)	$W_{pump}(mW)$	1.72	1.51	3.36	2.96	113.96
	$P_{sys}(kPa)$	8.72	5.13	5.81	8.27	40.10
Ours	$P_{system} (kPa)$	358	336	337	335	338
Ours	$\Delta T(K)$	15.00	10.0	15.0	10.00	10.00
	W_{pump} (mW)	1.66	1.37	1.90	2.68	113.96

79.61% better than baseline (unidirectional straight channels)

▶ 16.35% better than 1st place in ICCAD 2015 Contest

Experimental Results – Thermal Gradient Minimization

	Case #	1	2	3	4	5
Baseline	$P_{sys} (kPa)$	26.08	14.43	17.82	26.51	45.81
	T_{max} (K)	316	309	316	308	338
	$W_{pump}(mW)$	42.0	37.0	43.0	43.4	148.2
	$\Delta T(K)$	8.75	5.42	11.42	4.76	26.48
Ours	$P_{sys} (kPa)$	16.51	8.96	11.46	13.80	40.06
	T_{max} (K)	338	319	327	321	338
	W_{pump} (mW)	5.67	5.66	6.56	4.16	113.80
	$\Delta T(K)$	5.54	3.81	7.12	3.87	9.64

▶ Constraint W^*_{pump} on W_{pump} is set to 0.1% of die power

▶ 37.27% better than baseline

Experimental Results – Example Temperature Maps

