
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 6, JUNE 2020 1217

SALT: Provably Good Routing Topology by a
Novel Steiner Shallow-Light Tree Algorithm

Gengjie Chen and Evangeline F. Y. Young

Abstract—In a weighted undirected graph, a spanning/Steiner
shallow-light tree (SLT) simultaneously approximates: 1) shortest
distances from a root to the other vertices and 2) the min-
imum tree weight. The Steiner SLT has been proved to be
exponentially lighter than the spanning one. In this paper, we
propose a novel Steiner SLT construction method called Steiner
SLT (SALT), which is efficient and has the tightest bound over
all the state-of-the-art general-graph SLT algorithms. Applying
SALT to Manhattan space offers a smooth tradeoff between
rectilinear Steiner minimum tree and rectilinear Steiner mini-
mum arborescence for VLSI routing. The adaption also reduces
the time complexity from O(n2) to O(n log n). Besides, several
effective post-processing methods, including safe refinement and
shallowness-constrained edge substitution, are proposed to fur-
ther improve the result. The experimental results show that SALT
can achieve not only short path lengths and wirelength but also
small delay, compared to both classical and recent routing tree
construction methods.

Index Terms—Global routing, physical design, Steiner tree,
timing optimization.

I. INTRODUCTION

T IMING and power have been being crucial issues in
chip design since more than two decades ago. They

also become increasingly more critical as technology scales
and application evolves. For example, 50%–80% of gates in
high-performance ICs today are repeaters, which do not per-
form useful computation but work for timing closure [3];
over 50% of the chip at 8 nm will be powered off and
cannot be utilized due to the power constraint [4]; the power-
sensitive applications in mobile and Internet of Things become
ubiquitous [5].

Interconnect, as the carrier of signals, determines the timing
quality of ICs directly. It also significantly influences power
and consumes more power than computation nowadays. In
routing tree construction, both path length and tree weight (i.e.,
wirelength) and are thus important. Essentially, tree weight

Manuscript received June 15, 2018; revised October 19, 2018; accepted
December 28, 2018. Date of publication January 23, 2019; date of current
version May 22, 2020. This work was supported in part by the Research Grants
Council of Hong Kong under Project CUHK14208914, and in part by the
Hong Kong Ph.D. Fellowship Scheme. The preliminary version was presented
at the International Conference on Computer-Aided Design (ICCAD) in 2017.
This paper was recommended by Associate Editors I. Bustany and C. Chu.
(Corresponding author: Gengjie Chen.)

The authors are with the Department of Computer Science
and Engineering, Chinese University of Hong Kong, Hong Kong
(e-mail: gjchen@cse.cuhk.edu.hk; fyyoung@cse.cuhk.edu.hk).

Digital Object Identifier 10.1109/TCAD.2019.2894653

implies routing resource usage (routability), power consump-
tion, cell delay, and wire delay, while path length implies wire
delay [6].

A. Light Trees or Shallow Trees

It is a well-studied problem if only one of the objectives
between light tree weight and shallow path length is pursued,
whether the domain is the spanning tree or the rectilinear
Steiner one. For spanning trees, the minimum spanning tree
(MST) can be obtained by various classical algorithms like
Prim’s and Kruskal’s algorithms in O(m + n log n) time; the
shortest-path tree (SPT) can be constructed by Dijkstra’s algo-
rithm in O(m+ n log n) time [7]. For rectilinear Steiner trees,
the one with minimum tree weight is called a rectilinear
Steiner minimum tree (RSMT), while the lightest one with all
paths from root being shortest is a rectilinear Steiner minimum
arborescence (RSMA).

The RSMT construction can be achieved by using Steiner
nodes on Hanan grid [8] and is NP-hard [9]. Besides the
exponential-time exact algorithms (e.g., GeoSteiner [10]),
there are, however, many efficient heuristics achieving good or
even near optimal quality. Rectilinear MST (RMST) achieves
an 1.5-approximation [11] and can be constructed in O(n log n)

time [12]. Many fast algorithms (e.g., [13]–[19]) are also
proposed in order to pursue a smaller tree weight.

The RSMA construction is also NP-hard [20]. Approaches
for optimal RSMAs include integer programming [21]
and dynamic programming [22]. An O(n log n)-time
2-approximation is first proposed by Rao et al. [23]
and later generalized to all four quadrants by Córdova and
Lee [24]. Examples of efficient heuristics are [25]–[27].

B. Shallow Light Trees

The spanning/Steiner shallow-light tree (SLT) combines
the objectives of shallow path length and light tree weight
together, as Table I and Fig. 1 show. In a spanning/Steiner
tree with shallowness α and lightness β, each path length is at
most α times the shortest-path distance, while the tree weight
is β times the minimum tree weight. In an (ᾱ, β̄)-SLT, α ≤ ᾱ,
and β ≤ β̄.

A spanning SLT approximates SPT and MST simultane-
ously, where the tradeoff is in the order of (1 + ε, O(1/ε)).
The ABP algorithm by Awerbuch et al. [28] and the BRBC
algorithm by Cong et al. [29] are in fact identical and provide
a bound of (1+ 2ε, 1+ [2/ε]). After them, Khuller et al. [30]
proposed the KRY algorithm with a bound of (1+ε, 1+[2/ε])
and proves that the bound is the best possible one for span-
ning trees. KRY also provides a smooth tradeoff between SPT

0278-0070 c© 2019 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See https://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 24,2020 at 02:12:28 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0001-6016-4742

1218 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 6, JUNE 2020

TABLE I
SPANNING AND STEINER SLTS

(a) (b) (c)

(d) (e) (f)

Fig. 1. Different routing topologies on the same net (the root is marked by
red; α and β denote shallowness and lightness). (a) Net on a regular grid.
(b) Spanning SPT (α = (13/13), β = (182/39)). (c) RMST/RSMT (α =
(39/13), β = (39/39)). (d) RSMA (α = (13/13), β = (54/39)). (e) Spanning
SLT (α = (17/13), β = (61/39)). (f) SALT (α = (17/13), β = (44/39)).

and MST controlled by ε, while ABP does not (e.g., an MST
is not implied when ε = +∞). Besides, the PD algorithm
due to Alpert et al. [32] smoothly trades off between SPT and
MST, and has been widely used in industry [5]. However, the
resulted tree is not guaranteed to be SLT.

Recently, Steiner SLTs (SALTs) are proved to be
exponentially lighter than spanning ones by Elkin and
Solomon [1], [2]. The ES algorithm can efficiently build a
Steiner (1 + ε, O(log [1/ε]))-SLT with a time complexity of
O(n2). The constants in the shallowness–lightness bound of
(1+2ε, 4+2�log [2/ε]�) are, however, quite large (log denotes
log2 in this paper). Held and Rotter [31] study the problem of
SALT with vertex delays (measured by the number of bifur-
cations). When vertex delays are not taken into account, they
tighten the bound of ES to (1 + ε, 2 + �log [2/ε]�) in 2-D
Manhattan space.

C. Our Contributions

In this paper, we propose an efficient algorithm called SALT
for constructing a Steiner SLT and apply it to routing topology
construction. This paper is an extension to the preliminary
version [33]. Our contributions are summarized as follows.

1) We propose SALT for the Steiner SLT on general
graphs, whose shallowness–lightness bound is (1+ε, 2+
�log [2/ε]�). To the best of our knowledge, the bound
is tighter than all the previous methods for constructing
general-graph spanning/SALTs (see Table II).

TABLE II
HISTORICAL PROGRESS OF SLTS

2) We simplify SALT and reduce the runtime from O(n2)

to O(n log n), when applying it to the Manhattan space
for VLSI routing. We further decrease path lengths
and tree weight in the Manhattan space by integrating
SALT with the classical RSMA [23] and RSMT [19]
algorithms. The method (rectilinear SALT) provides a
smooth tradeoff between RSMA and RSMT controlled
by ε.1

3) We apply several effective safe refinement (SR) tech-
niques to improve the wirelength and path lengths of
the tree output by rectilinear SALT.

4) As another post-processing step, we design an edge sub-
stitution algorithm to further minimize the wirelength,
where slight path length degradation is allowed but is
controlled under the shallowness constraint.

Note that we follow the definition in ES [2] for the
general-metric Steiner tree. There are, however, some lim-
itations on the generality (e.g., cannot be embedded into a
Euclidean metric). The definition will be introduced in detail
in Section II-A1.

As a geometric approach for VLSI routing, our method
directly targets wirelength and path lengths instead of a highly
accurate timing model. However, this is desirable due to three
reasons. First, SALT provides a bounded tradeoff and has a
strong global view. It can generate high-quality initial solutions
for later stage optimization. Second, the linear delay model is
reasonable due to buffering [34], [35], wire sizing, and layer
assignment, compared to the Elmore delay model. Third, in
the experiment, SALT is also comparable in terms of Elmore
delay with the state-of-the-art Steiner tree construction method
targeting Elmore delay directly [36]–[38].

Last but not least, we want to highlight that even though
the bound analysis of SALT is complicated, it can be eas-
ily implemented with hundreds of lines of codes. The source
code of SALT implementation is also publicly available at
https://github.com/chengengjie/salt.

The remainder of this paper is organized as follows. The
SALT algorithm on general graph (SALT) is presented in
Section II. Its adaption to the Manhattan space (rectlinear
SALT) is detailed in Section III. The post-processing tech-
niques for further improving constructed trees are illustrated
by Sections IV and V. In the end, Section VI shows and ana-
lyzes the experimental results, and Section VII concludes this
paper.

1It was found after the preliminary version of this paper was published that
our rectilinear SALT achieves the same bound as the approach in [31] in the
Manhattan space. A minor difference is that rectilinear SALT incorporates a
classical RSMA method [24] directly, leading to better Steiner trees in prac-
tice. Another small difference is that we break a tie (line 19 of Algorithm 2)
to reduce the wirelength.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 24,2020 at 02:12:28 UTC from IEEE Xplore. Restrictions apply.

CHEN AND YOUNG: SALT: PROVABLY GOOD ROUTING TOPOLOGY BY NOVEL SALT ALGORITHM 1219

TABLE III
NOTATIONS USED IN ES

Algorithm 1 ES
Require: Graph G = (V, E, w), root r, trade-off parameter ε;
Ensure: Steiner SLT T = (V ′, E′, w′) with V ′ ⊇ V that dominates

G;
1: TM ← MST(G);
2: P← Hamiltonian path based on TM starting from r;
3: Breakpoint set B← ∅;
4: Breakpoint b← r;
5: for v← P1 to Pn do
6: if dP(b, v) > ε · dG(r, v) then
7: b← v;
8: B← B ∪ {b};
9: TB ← Steiner SPT on G[B ∪ {r}] rooted at r;

10: T ← spanning SPT on graph TM ∪ TB;

II. STEINER SHALLOW-LIGHT TREE ALGORITHM

The exact problem formulation and the ES algorithm [2]
for the SALT are first briefly introduced as preliminaries. The
framework as well as the light Steiner SPT construction of
SALT is then described, followed by the bound analysis.

A. Preliminaries

1) Problem Formulation: Our SALT algorithm on general
graphs is under the same problem formulation used in [2].
A spanning/Steiner tree T of a weighted undirected n-vertex
graph G = (V, E, w) with respect to a root vertex r is called an
SLT if: 1) it approximates all shortest-path distances dG(r, v)
from r to v ∈ V and 2) its weight w(T) is bounded by that
of MST w(MST(G)). For a (ᾱ, β̄)-SLT: 1) the shallowness
α = max{[dT(r, v)/dG(r, v)]|v ∈ V\{r}} ≤ ᾱ and 2) lightness
β = [w(T)/w(MST(G))] ≤ β̄. Note that on a graph that is
metric (i.e., with edge weights satisfying triangle inequality),
a lightness bound with respect to MST infers one with respect
to SMT because w(MST(G)) ≤ 2·w(SMT(G)) (i.e., w(T) ≤ β̄·
w(MST(G)) ≤ 2·β̄ ·w(SMT(G))). For rectilinear Steiner trees,
the gap is smaller with w(RMST(G)) ≤ 1.5 · w(RSMT(G)).

Considering the general metric scenario, a Steiner tree for
a graph G = (V, E, w) is defined as a tree T = (V ′, E′, w′)
with V ′ ⊇ V and w′ : E′ → R

+ that dominates the metric MG
induced by G, i.e., ∀u, v ∈ V, dT(u, v) ≥ dG(u, v).

Even though such SALT cannot be embedded into many
metric spaces (e.g., Euclidean space2 or finite graph metrics),
it is applicable to the Manhattan space, which will be shown
in Section III. For simplicity of illustration, we henceforth
assume all the input graph G is complete and metric. Indeed,
any weighted undirected graph G∗ defines a metric space and
thus implies a graph G that is complete and metric.

2) ES Algorithm: The ES algorithm extends the ABP algo-
rithm for spanning SLTs to Steiner ones. The key steps are
shown in Algorithm 1 and Fig. 2 with notations summarized
in Table III. Its main idea is to accumulate the distance along

2In the Euclidean plane, a bound of (1+ ε, O(
√

[1/ε])) is achievable and
tight for SALTs [39], [40].

(a) (b) (c) (d)

Fig. 2. Sample run of Algorithm 1 (ε = 1). (a) Construct MST TM (shal-
lowness α = 3.14 and lightness β = 1). (b) Identify breakpoints B (circled
by green) on the Hamiltonian path P, where each blue arrow points from
a nonbreakpoint v to its previous vertex for accumulating distance dP(b, v).
(c) Obtain the Steiner SPT TB on G[B ∪ {r}], and get graph TM ∪ TB. (d)
Construct the spanning SPT on TM ∪ TB, which is the desired SALT T
(α = 1.90, β = 1.06).

a Hamiltonian path P and identify a breakpoint b whenever
the accumulated distance becomes too long. Breakpoints are
then connected to the root r directly by a Steiner SPT (line 9).
In this way, the distance dT(r, b) between a breakpoint b and
r in the tree T becomes the shortest-path distance dG(r, b).
For other vertices, the path length is bounded.

The Steiner SPT for connecting breaking points is a dedi-
cated design (refer to [2, Sec. 2] for details). Applying it to
a graph G′ leads to the lightness bound β̄ = 1 + 2�log n�.
The algorithm starts by building a skeleton of a full balanced
binary tree, of which the leaves are the original vertices and
the inner nodes are Steiner points. From bottom to top, the
edge weights are assigned carefully, to make sure the tree will
be an SPT that dominates G.

ES is not complicated, but surprisingly, it leads to an expo-
nentially lighter SLT than ABP. Besides, it is reasonably fast.
The exact bounds are shown by Theorem 1.

Theorem 1: The ES algorithm generates a Steiner (1 +
2ε, 4+ 2�log [2/ε]�)-SLT in O(n2) time.

Proof: See [2, Lemmas 3.4–3.6].

B. Framework

SALT first identifies some breakpoints on an initial topology
and then connect them to the root by a Steiner SPT, which is
similar to ES. Inspired by the KRY algorithm [30], we propose
to use: 1) a tighter criterion for identifying breakpoints and 2) a
better initial topology (i.e., an MST instead of a Hamiltonian
path) in the SALT construction. The framework with the two
effective techniques is illustrated by Algorithm 2 and Fig. 3
with additional notations summarized in Table IV. As a sub-
routine, the light Steiner SPT construction method will be
described by Algorithm 3 in the next section.

In SALT, the solution is initialized to an MST and gradu-
ally modified toward an SALT. The major routine is based on
a depth-first search on the MST (function DFS). During DFS,
if the shallowness constraint is violated at a vertex, the vertex
will become a breakpoint (line 9). In the end, breakpoints will
be connected to r via an SPT, so its distance estimate d[v] is
set to the shortest-path distance dG(r, v) for relaxing the dis-
tance estimates of the other vertices (line 10). Two relaxations
are conducted on each edge, from parent to child and from
child to parent (lines 12 and 14). After DFS, edges (v, p[v])
for nonbreakpoints v define a forest F, with tree roots being
breakpoints. In the end, breakpoints are connected to r by a
Steiner SPT TB.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 24,2020 at 02:12:28 UTC from IEEE Xplore. Restrictions apply.

1220 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 6, JUNE 2020

TABLE IV
ADDITIONAL NOTATIONS USED IN SALT

Algorithm 2 SALT
Require: Graph G = (V, E, w), root r, trade-off parameter ε;
Ensure: Steiner SLT T = (V ′, E′, w′) with V ′ ⊇ V that dominates

G;
1: Initialize (B← ∅, d[r] = 0, ∀v ∈ V, d[v] = +∞, p[v] = null);
2: TM ← MST(G);
3: DFS(r, TM);
4: Forest F← {(v, p[v])|v ∈ V\(B ∪ {r})};
5: TB ← Steiner SPT rooted at r for G[B ∪ {r}] by Algorithm 3;
6: T ← F ∪ TB;
7: function DFS(v, TM)
8: if d[v] > (1+ ε) · dG(r, v) then
9: B← B ∪ {v};

10: d[v]← dG(r, v);
11: for each child u of v in TM do
12: RELAX(v, u);
13: DFS(u, TM);
14: RELAX(u, v);
15: function RELAX(u, v)
16: if d[v] > d[u]+ w(uv) then
17: d[v]← d[u]+ w(uv);
18: p[v]← u;
19: else if d[v] = d[u]+ w(uv) and w(p[v]v) < w(uv) then
20: p[v]← u;

(a) (b) (c)

Fig. 3. Sample run of Algorithm 2 (ε = 1). (a) Construct MST TM , where
each blue arrow points from a vertex v to its parent p[v]. (b) Update p[v]
and identify breakpoints B (circled by green) during the DFS on TM , which
results to a forest F with tree roots being B. (c) Obtain the Steiner SPT TB
on G[B ∪ {r}], and T = F ∪ TB is the final SALT (shallowness α = 1.43,
lightness β = 1.05).

The relaxation (function Relax) from vertex u to v means
updating distance estimate d[v] if the path from r via u to v
is shorter (line 16). Different from KRY, we also update the
parent p[v] of v even if d[v] can not be shortened but its edge
to the parent can becomes shorter (line 19). The latter situation
actually frequently happens in Manhattan space and benefits
the tree weight.

The two techniques mentioned above are detailed here.
First, breakpoints are identified by checking distance esti-
mate d[v] instead of the accumulated distance dP(b, v) on
the Hamiltonian cycle (in Algorithm 1 line 6). As a straight-
forward modification, d[v] can be the sum of the shortest-path
length dG(r, b) (from r to the previous breakpoint b) and the
path length dP(b, v) (from b to v), which is an upper bound
on dT(r, v) in the final T . More specifically, we can change
the condition dP(b, v) > ε · dG(r, v) to dG(r, b) + dP(b, v) >

(1 + ε) · dG(r, v). Note that the value of d[v] in Algorithm 2

TABLE V
ADDITIONAL NOTATIONS USED IN LIGHT STEINER SPT

Fig. 4. During the Steiner SPT construction, neighboring vertices in L are
merged pair by pair into Steiner vertices in L′. Shown by the enlarged the
figure, vertices Lk (i.e., zl) and Lk+1 (i.e., zr) are merged to a Steiner vertex
z in L′.

is computed correctly by the relaxation steps before and after
each recursive call (lines 12 and 14). Second, the initial topol-
ogy is an MST instead of a Hamiltonian path. In this way, the
distance estimate d[v] is according to the MST, which is tighter
than d[v] = dG(r, b)+dP(b, v) based on the Hamiltonian path
and can trigger fewer breakpoints. Note that in extreme cases,
the second technique brings no benefit (e.g., MST is also a
Hamiltonian path), but it does help in most practical cases.

C. Light Steiner Shortest-Path Tree

A light Steiner SPT can be constructed by Algorithm 3,
which has smaller tree weight than that in the ES algorithm.
Notations used are in Table V and Fig. 4.

Same as the Steiner SPT in ES, our SPT is also a full
balanced binary tree, with leaves being the given vertices
and inner nodes being Steiner vertices. Initially, the vertex
sequence L contains all the given vertices. In each iteration of
the main loop (lines 4–13), neighboring vertices are merged
(i.e., connected to a parent Steiner vertex) pair by pair to form
the vertex sequence L′ for the next iteration. Note that the ver-
tex number is reduced by half in each iteration and eventually
becomes one.

When a Steiner vertex z is inserted as the parent for vertices
zl and zr, the edge weights are assigned under the consideration
of disbalance b and distance surplus s

b(zl, zr) = t(zl)− t(zr) (1)

s(zl, zr) = max{dG(vl, vr)− dT(zl, vl)− dT(zr, vr)

|vl ∈ Leaves(zl), vr ∈ Leaves(zr)} (2)

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 24,2020 at 02:12:28 UTC from IEEE Xplore. Restrictions apply.

CHEN AND YOUNG: SALT: PROVABLY GOOD ROUTING TOPOLOGY BY NOVEL SALT ALGORITHM 1221

Algorithm 3 Light Steiner SPT
Require: Graph G = (V, E, w), root r;
Ensure: Steiner SPT T = (V ′, E′, w′) with V ′ ⊇ V that dominates

G;
1: Initialize (V ′ ← V, E′ ← ∅,∀v ∈ V, t(v)← dG(r, v));
2: L← Hamiltonian circle based on MST(G) (Ln+1 = L1);
3: while |L| > 1 do
4: for k = 1 to n do
5: Calculate b(Lk, Lk+1), s(Lk, Lk+1) by (1) (2);
6: c(Lk, Lk+1)← max{s(Lk, Lk+1), |b(Lk, Lk+1)|};
7: ML ← a light perfect (or near perfect) matching on the circle

defined by L and c;
8: L′ ← empty vertex sequence;
9: for LkLk+1 ∈ ML do

10: ADDSTEINER(Lk, Lk+1);
11: if |L| is odd then
12: Append the unmatched vertex to L′;
13: L← L′;
14: function ADDSTEINER(zl, zr)
15: Add a Steiner vertex z into V ′;
16: Add edges zzl and zzr into E′;
17: if |b(zl, zr)| ≤ s(zl, zr) then
18: w′(zzl)← s(zl,zr)+b(zl,zr)

2 ;

19: w′(zzr)← s(zl,zr)−b(zl,zr)
2 ;

20: else
21: w′(zzl)← max{b(zl, zr), 0};
22: w′(zzr)← max{−b(zl, zr), 0};
23: t(z)← dG(r, v)− dT (z, v) for an arbitrary v ∈ Leaves(z);
24: Append z to L′;

where t(z) is the distance from root r to vertex z in the final
SPT. It is obvious that t(z) = dG(r, z) if z is a leaf. t and b
help maintain T to be an SPT and require the choice of edge
weights w′(zzl) and w′(zzr) to satisfy

w′(zzl)− w′(zzr) = b(zl, zr). (3)

In this way, t(zl) = t(z) + w′(zzl) and t(zr) = t(z) + w′(zzr)

can be true at the same time. For distance surplus s, w′(zzl),
and w′(zzr) should satisfy

w′(zzl)+ w′(zzr) ≥ s(zl, zr). (4)

This guarantees dG(vl, vr) ≤ dT(zl, vl) + w′(zzl) + w′(zzr) +
dT(zr, vr) = dT(vl, vr) (i.e., T dominates G). Algorithmic
details are in function AddSteiner. Note that in line 23,
arbitrary v ∈ Leaves(z) can be picked to calculate t(z) due to
the following lemma.

Lemma 1: In Algorithm 3, for any vertex z in T and any
vertex v ∈ Leaves(z), dG(r, v)− dT(z, v) is a constant.

Proof: See [2, Lemma 2.2].
Unlike the ES algorithm, which first determines the full-tree

topology based on a Hamiltonian path and then assigns weight
to the edges, our algorithm calculates the edge cost c(Lk, Lk+1)

along L at each level and selects a good matching ML to add
Steiner vertices. According to the function AddSteiner, if
a Steiner point z is inserted, the sum c(zl, zr) of the weights
of the two edges added will be

c(zl, zr) = w′(zzl)+ w′(zzr) = max{|b(zl, zr)|, s(zl, zr)}. (5)

Since a cycle of even (resp. odd) number of edges can be
decomposed into two perfect (resp. near perfect) matching,
the weight of the lighter one will be no more than half of the

cycle weight. In this way, the sum of the weights of the added
edges is bounded.

Another technique that we use is to include the root r into
the initial Hamiltonian circle. In this way, an edge between
the final Steiner point and r is avoided and saved.

The resulted tree T is an SPT, of which the proof is simple
and is similar to that in [2].

D. Bound Analysis

We first analyze the lightness β of the Steiner SPT generated
by Algorithm 3.

Lemma 2: In Algorithm 3, for any vertex z in T , there exist
vi, vj ∈ Leaves(z), such that dT(z, vi)+ dT(z, vj) = dG(vi, vj).

Proof: See Appendix A.
The next lemma is the key to our weight analysis, which

shows that the weight of the circle defined by L and c
is bounded by the weight of the initial Hamiltonian cycle
W(1, n+ 1) =∑n

k=1 dG(vk, vk+1).
Lemma 3: For the vertex sequence L in any iteration of

Algorithm 3,
∑|L|−1

k=1 c(Lk, Lk+1) ≤ W(1, n+ 1).
Proof: See Appendix B.
Lemma 4: In the ith iteration of Algorithm 3, the total

weight of added edges W ′i ≤ w(MST(G)).
Proof: Due to the perfect (or near perfect) matching

used and Lemma 3, W ′i ≤ (1/2) · ∑|L|−1
k=1 c(Lk, Lk+1) ≤

(1/2) ·W(1, n + 1). Because of triangle inequality, W(1, n +
1) ≤ 2 · w(MST(G)). By combining them, W ′i ≤
w(MST(G)).

With the help of Lemma 4, the lightness bound of
Algorithm 3 can be easily proved to be β̄ = �log n�. Note
that the Steiner SPT in ES has β̄ = 1 + 2�log n�, which is
more than twice of ours.

Theorem 2: The Steiner SPT T generated by Algorithm 3
has lightness bound β̄ = �log n�.

Proof: With �log n� iterations, |L| can be reduced from
n to 1. Therefore, w(T) = ∑�log n�

i=1 W ′i ≤ �log n� ·
w(MST(G)).

We then analyze the bounds on shallowness α and lightness
β of SALT. Two lemmas are first needed.

Lemma 5: In Algorithm 3, if
∑

v∈V\{r} dG(r, v) ≤ θ ·η (θ ≥
1, η > 0), then w(T) ≤ �log θ� · w(MST(G))+ η.

Proof: See Appendix C.
Lemma 6: In SALT,

∑
v∈B dG(r, v) ≤ [2/ε] · w(MST(G)).

Proof: See [30, Lemma 3.2].
According to Lemma 6, KRY, which connects breakpoints to

root r by edges directly, leads to a spanning (1+ε, 1+ [2/ε])-
SLT. Introducing Steiner points by Algorithm 3 makes the
bound tighter.

Theorem 3: SALT generates a Steiner (1 + ε, 2 +
�log [2/ε]�)-SLT.

Proof: Whenever d[v] of a vertex v exceeds (1+ε) times its
shortest-path length dG(r, v), d[v] is set to dG(r, v) and fixed.
Therefore, we have shallowness α ≤ 1+ ε.

Since TB is a Steiner SPT on graph G[B ∪ {r}], substi-
tuting θ = [2/ε] and η = w(MST(G)) (by Lemma 6) into
Lemma 5 makes w(TB) ≤ (1 + �log [2/ε]�) · w(MST(G)).
Besides, w(F) ≤ w(MST(G)) because F ⊂ MST(G).
Hence, w(T) = w(TB) + w(MST(G)) ≤ (2 + �log [2/ε]�) ·
w(MST(G)).

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 24,2020 at 02:12:28 UTC from IEEE Xplore. Restrictions apply.

1222 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 6, JUNE 2020

Algorithm 4 Rectilinear SALT
Require: Points V on Manhattan plane, root r;
Ensure: Rectilinear Steiner SLT T = (V ′, E′) with V ′ ⊇ V;

1: Initialize (B← ∅, d[r] = 0, ∀v ∈ V, d[v] = +∞, p[v] = null);
2: TM ← RSMT on V by FLUTE;
3: DFS(r, TM);
4: Forest F← {(v, p[v])|v ∈ V\(B ∪ {r})};
5: TB ← RSMA rooted at r on B ∪ {r} by CL;
6: T ← F ∪ TB;
7: function DFS(v, TM)
8: if v ∈ V and d[v] > (1+ ε) · dG(r, v) then
9: B← B ∪ {v};

10: d[v]← dG(r, v);
11: for each child u of v in TM do
12: RELAX(v, u);
13: DFS(u, TM);
14: RELAX(u, v);

(a) (b) (c) (d)

Fig. 5. Sample run of Algorithm 4 (ε = 1). (a) Construct RSMT TM by
FLUTE (shallowness α = 2.66, lightness β = 0.91). (b) Get breakpoints B
(circled by green) and forest F. (c) Obtain the RSMA TB on G[B ∪ {r}] by
CL and T = F∪TB is the rectilinear SALT (α = 1.22, β = 1.01). (d) RSMA
by CL on the net (α = 1, β = 1.11).

III. RECTILINEAR STEINER SHALLOW-LIGHT

TREE ALGORITHM

SALT, which generates a Steiner (1 + ε, 2 + �log [2/ε]�)-
SLT for a general graph, can be directly applied in the
Manhattan space. However, it can be enhanced with the
help of some special properties as well as classical algo-
rithms. The resulted algorithm, rectilinear SALT, is shown by
Algorithm 4 and Fig. 5. W.l.o.g., we assume that the root r is
at the origin of the space.

First of all, to build a rectilinear Steiner SPT, adding a
Steiner point to merge two vertices (function AddSteiner in
Algorithm 3) becomes easier on Manhattan plane. In the fol-
lowing discussion, we focus on the 2-D situation, but it can be
extended to higher dimensions. For two vertices zl = (xzl , yzl)

and zr = (xzr , yzr), the x coordinate of their parent Steiner
point z is

xz =

⎧
⎪⎨

⎪⎩

min
{
xzl , xzr

}
, xzl , xzr ≥ 0

max
{
xzl , xzr

}
, xzl , xzr ≤ 0

0, xzl · xzr < 0.

(6)

yz is computed similarly. This location assignment of z is deter-
mined by distances w′(zzl), w′(zzr), and t(z). Note that the case
|b(zl, zr)| > s(zl, zr) (Algorithm 3 lines 20–22) never happens
now. Intuitively, such Steiner point z maximizes the overlap-
ping of the two shortest paths from r to vertices zl and zr.
In this way, the coordinate of z can be directly obtained from
locations of zl and zr, which avoids the checking of all leaves

of zl and zr in (2). Therefore, the time complexity is now
bounded by obtaining the MST and is improved to O(n log n).

Second, the Steiner SPT problem in Manhattan space is
exactly the classical RSMA problem [20], [23]. The CL heuris-
tics [24] is an approximation algorithm produces a tree of
weight at most twice the optimal. In practice, it is mostly
optimal or near optimal, and is very efficient with a time com-
plexity of O(n log n). On the other hand, our light Steiner SPT
algorithm with lightness β ≤ �log [2/ε]� may be far away
from the optimal SPT in worst cases. For example, when all
vertices locate on a straight line, the optimal SPT is a path and
also the MST (i.e., β = 1). Hence, we use CL to construct
the Steiner SPT to further reduce the tree weight in practice
(Algorithm 4 line 5). Note that this modification maintain the
proved complexity for both the quality (shallowness α and
lightness β) and time of Algorithm 2. While the constant in
the shallowness bound (ᾱ = 1 + ε) is also maintained, the
constant in the lightness bound (β̄ = 2+ �log [2/ε]�) may be
slightly worsened in some corner cases but is better or much
better in most cases.

Third, instead of starting from an MST in Algorithm 2,
an initial tree with lighter weight is achievable by allow-
ing Steiner points. In Manhattan space, RSMT is a well-
investigated problem, and FLUTE [19] is adopted in our
implementation (Algorithm 4 line 2). In this way, the bound
on the tree weight w(T) actually becomes tighter. There is
still w(T) ≤ (2 + �log [2/ε]�) · w(TM), where TM is MST in
Theorem 3 but now becomes RSMT. Note that different from
Algorithm 2, the Steiner vertices in the RSMT do not need to
be checked during the DFS (Algorithm 4 line 8).

By the above modifications, we reduce the lightness β of
the SALT constructed and improve the time complexity to
O(n log n). From another viewpoint, rectilinear SALT is a
smooth tradeoff between RSMA and RSMT. The smaller the
ε, the closer the rectilinear SALT is to an RSMA; the larger
the ε, the closer it is to an RSMT. It is almost a CL RSMA
when ε = 0 and an FLUTE RSMT when ε = +∞. In the mid-
dle, it is a bounded tradeoff between them. To a certain extent,
Fig. 5 illustrates the situation. The RSMT in Fig. 5(a) is the
lightest but has some long paths, while the RSMA in Fig. 5(d)
is the shallowest but is of a large tree weight. Combining the
strengths of the both, the rectilinear SALT in Fig. 5(c) is not
only light but also shallow.

IV. SAFE REFINEMENT

Three effective SR techniques are adopted to further
improve rectilinear SALT, including intersected edge cancel-
ing (IEC), L-/Z-shape edge flipping (LEF), and U-shape edge
shifting (UES). They are safe as they improve wirelength
or path length or both without worsening any of them. For
simplicity, rectilinear SALT will be referred as SALT hereafter.

A. Intersected Edge Canceling

In SALT, edges in RSMA TB may intersect with edges in
forest F, since TB and F are constructed separately. Here,
the intersection between two edges in the Manhattan space
means that their bounding boxes intersect, which is illustrated
by Fig. 6(a). For intersected edges v3v1 and v4v2, we can
add a Steiner vertex z within the intersection box, connect

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 24,2020 at 02:12:28 UTC from IEEE Xplore. Restrictions apply.

CHEN AND YOUNG: SALT: PROVABLY GOOD ROUTING TOPOLOGY BY NOVEL SALT ALGORITHM 1223

(a) (b) (c)

(d) (e) (f)

Fig. 6. IEC (arrows point to parents). (a) Intersection box (filled by gray).
(b) Child corners v′3, v′4. (c) z should be on edge v′3, v′4. (d) z should be either
v′3 or v′4. (e) First solution. (f) Second solution.

child vertices v3 and v4 to it, and then connect it to either
v1 or v2. By choosing the shorter path between (z, v1, . . . , r)
and (z, v2, . . . , r), both path lengths and wirelength can be
reduced. The question is where the best location for the Steiner
vertex z is, and it can be answered by Theorem 4. Among the
four corners of an intersection box, a child corner is the closest
to a child vertex [e.g., v′3 and v′4 in Fig. 6(b)].

Theorem 4: For intersected edges, the optimal Steiner ver-
tex z is a child corner of the intersection box.

Proof: First, z should be on a child edge (i.e., the edge
between the two child corners). If not, its projected point z′ on
the child edge can improve the wirelength without impacting
path lengths [Fig. 6(c)]. Supposing z is connected to v1, there
is w(v3z)+w(v4z)+w(zv1) = (w(v3z′)+w(z′z))+ (w(v4z′)+
w(z′z))+ (w(z′v1)− w(z′z)) ≥ w(v3z′)+ w(v4z′)+ w(z′v1).

When z is on the child edge but not a child corner, it can
be improved by moving to a child corner [Fig. 6(d)]. Assume
z is still connected to v1. For wirelength, there is w(v3z) +
w(v4z) + w(zv1) ≥ w(v3v′4) + w(v4v′4) + w(v′4v1); for path
lengths, there is w(v4z)+ w(zv1) ≥ w(v4v′4)+ w(v′4v1), while
w(v3z)+ w(zv1) = w(v3v′4)+ w(v′4v1).

The argument is similar if z is connected to v2. In short,
the optimal solution is a child corner (either v′3 or v′4) shown
by Fig. 6(e) and (f). Note that, in some cases, the two child
corners may merge into one, or the intersection box may even
degenerates to a segment, but our discussion is generic.

For a Steiner tree, we propose an iterative scheme for iden-
tifying and canceling all the intersected edges (Algorithm 5)
based on R-tree [41]. Throughout the process, the major invari-
ant is that the boxes in R-tree R do not intersect with each
other. By iteratively examining boxes (lines 3–11), a new box
r will be broken or shrank (due to the intersection cancel-
ing in Fig. 6) until all the intersections caused by it has been
resolved. Regarding the running time of Algorithm 5, it is
O(n log n) thanks to the O(log n)-time query of R-tree and the
O(n) edges in total.

B. L-/Z-Shape Edge Flipping

Edges may be overlapped with each other by flipping (in L
or Z shape) and thus improves wirelength and path lengths, as

Algorithm 5 IEC
Require: Tree T;
Ensure: Tree T ′ without intersected edges;

1: Queue Q← bounding boxes of all edges in T;
2: R-tree R← ∅;
3: while Q is not empty do
4: Box r← dequeue Q;
5: Search for a box r′ in R that intersects with r;
6: if there is such r′ then
7: Delete r′ from R;
8: Cancel the intersection between r and r′;
9: Enqueue newly generated edges to Q;

10: else
11: Insert r to R;

(a) (b)

Fig. 7. L-shape edge flipping. (a) Input. (b) Output.

(a) (b) (c) (d)

Fig. 8. Z-shape edge flipping by iterative L-shape flipping. (a) Input. (b) First
L-shape flipping. (c) Second L-shape flipping (i.e., a Z-shape flipping).
(d) Removing redundant Steiner vertex.

(a) (b)

Fig. 9. (Canonical) UES. (a) Input. (b) Output.

Figs. 7 and 8 show. Ho et al. [13] proposed a dynamic pro-
gramming for edge flipping. The method is linear-time if the
vertex degree is bounded, and generates optimal wirelength if
only edge overlapping around a vertex is counted. We apply
this technique. In SALT, the maximum vertex degree is the
sum of that in FLUTE (four, according to [8]) and CL (four,
considering the root), as an SALT T is the union of a FLUTE
forest F and a CL RSMA TB. Therefore, the vertex degree
is bounded (≤ 4 + 4 = 8) and guarantees the O(n) time. In
our implementation, the optimal L-shape flipping is adopted,
since the constant in the time complexity of the optimal Z-
shape flipping is quite large. The Z-shape flipping can be
achieved by iterative L-shape flipping, which is demonstrated
by Fig. 8.

C. U-Shape Edge Shifting

The UES is proposed by Boese et al. [42]. It is beneficial
not only to wirelength and path lengths but also to Elmore
delay. An example is in Fig. 9, where the edge v2v3 is shifted

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 24,2020 at 02:12:28 UTC from IEEE Xplore. Restrictions apply.

1224 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 6, JUNE 2020

(a) (b) (c) (d)

Fig. 10. LEF may make the edge intersection shrank or even disappeared.
(a) Case where edge v1v2 intersects with edge v3v4. (b) Another case where
edge v1v2 intersects with edge v3v4. (c) After L-shape edge flipping on (a),
the edge intersection shrinks. (d) After L-shape edge flipping on (b), the edge
intersection disappears.

(a) (b) (c) (d)

Fig. 11. General UES. (a) Input. (b) LEF. (c) Canonical UES. (d) Removing
redundant Steiner vertex.

to v′2v′3. UES can be performed during a tree traversal. It takes
O(n) time due to the bounded vertex degree in SALT.

D. Order of Safe Refinement Techniques

In our implementation, the three SR techniques are per-
formed in the following order: 1) IEC; 2) LEF; and 3) UES.
It is based on two considerations.

First, among the three SR methods, IEC changes topologies
more globally and significantly, while the other two meth-
ods work on topologically neighbored edges only. Meanwhile,
the other two methods may influence the solution space of
IEC. For example in Fig. 10, after LEF, the previous edge
intersection may shrink [Fig. 10(b)] or disappear [Fig. 10(d)],
which means less or even missed improvement.

Second, a general UES can be decomposed into LEF and
a canonical UES (Fig. 11). In a canonical U-shape path, the
middle edge (e.g., edge v2v3 of path v1v2v3v4 in Fig. 9) is
strictly horizontal or vertical. Therefore, conducting LEF first
avoids handling the many corner cases and thus eases the
implementation of general UES.

V. SHALLOWNESS-CONSTRAINED EDGE SUBSTITUTION

Compared with SR, shallowness-constrained edge substitu-
tion (SCES) is more aggressive in wirelength minimization. It
allows slight path length degradation but make it under control
by constraining the shallowness.

Edge substitution is an effective technique for constructing
RSMT [16], [17], where a target vertex (e.g., vi in Fig. 12)
is considered for connecting to a nearby candidate edge (vjv′j
in Fig. 12). The idea can be brought to SLTs, but the con-
sideration in shallowness besides lightness poses a great limit
on the solution space. To minimize wirelength in RSMT con-
struction, it simply requires removing the longest edge along
the circle formed by the new edge. But this could incur huge
influence on the path lengths. Because not only can the path
lengths of many vertices be degraded (if a vertex has longer
path to the root, all its descendants suffer), but also the direc-
tions of edges may be reversed. SCES is thus proposed. Here,

(a) (b) (c)

Fig. 12. SCES. (a) Before SCES, vi is the target vertex with v′i being its
parent, while vjv′j is the candidate edge. (b) v′′i is the closest point to vi within
the bounding box of edge vjv′j. (c) After SCES, edge viv′i is substituted by
edges viv′′i , vjv′′i , and v′′i v′j.

Algorithm 6 SCES
Require: Tree T(V, E);
Ensure: Refined tree T ′;

1: Compute slack(T(v)) for v ∈ V (by two tree traversals);
2: Query candidate edges for V (by nearest neighbors or R-tree);
3: for vi ∈ V do
4: Best edge index k← null
5: Best wirelength change �WL∗ ← 0
6: for each candidate edge vjv′j of vi do
7: Continue if vj ∈ T(vi);
8: v′′i ← closest point to vi in the bounding box of vjv′j;
9: Wirelength change �WL← dG(vi, v′′i)− dG(vi, v′i);

10: Path length change �PL ← dT (r, v′j) + dG(v′j, vi) −
dT (r, v′j);

11: if �WL < �WL∗ and �PL < slack(T(vi)) then
12: �WL∗ ← �WL;
13: k← j;
14: if �WL∗ < 0 then
15: Disconnect viv′i, connect viv′′i , vkv′′i and v′′i v′k;
16: Update slack(T(u)) for vertex u in T(vi) and path to r;

for a tree resulted by running SALT with ε, its shallowness α

after SCES will be still under 1+ ε.
In SCES, the substituted edge is restricted to be the

parent edge of the target vertex only [e.g., edge viv′i in
Fig. 12(b) and (c)] due to two reasons. First, reversing edges
tends to cause detour and thus shallowness violation. Second,
for each of the O(n) possible substituted edges along the cir-
cle, O(n) vertices may have path lengths affected, leading to
high computation cost for a single pair of target vertex and
candidate edge.

Algorithm 6 shows the details of the proposed SCES. In
order to efficiently check whether an edge substitution violates
shallowness constraint, path length dT(r, v) for each vertex v
is precomputed by a preorder traversal. Slack slack(v) of each
vertex v and slack(T(v)) of the subtree T(v) rooted at v are
then computed by a post-order traversal followed (line 1):

slack(v) = (1+ ε) · dG(r, v)− dT(r, v) (7)

slack(T(v)) = min
u∈T(v)

slack(u). (8)

In this way, for a target vertex vi, if a candidate substitution
increases its path length by �PL, its legality means �PL <

slack(T(vi)) (line 11). Among all the candidate edges of a
vertex vi, the one that legally saves most wirelength will be
connected to vi by a Steiner point [v′′i in Fig. 12(c)]. Note
that a legal candidate edge vjv′j cannot be in T(vi) (line 7),
which will otherwise make the tree disconnected. For a good
order of visiting vertices (line 3), Algorithm 6 can be run
twice in different modes. The first run calculates the wirelength

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 24,2020 at 02:12:28 UTC from IEEE Xplore. Restrictions apply.

CHEN AND YOUNG: SALT: PROVABLY GOOD ROUTING TOPOLOGY BY NOVEL SALT ALGORITHM 1225

(a) (b)

Fig. 13. Two ways to find the candidate edges for SCES: (a) NN in each
octant (marked by green) and (b) R-tree query by an Manhattan circle.

(a) (b)

(c) (d)

Fig. 14. Insufficiency of SCES based on nearest neighbors. Assume that a
small ε (e.g., 0.05) is used. (a) Input tree. (b) Only SCES that can be achieved
by considering nearest neighbors. (c) SCES achieved by using R-tree. (d) Final
result of iterative SCES.

improvement under the input topology T , while the second
processes the edge substitutions in the order of descending
improvement and commits those that are still legal.

Now the only problem left is how to efficiently identify can-
didate edges (line 2). The first way is to exploit the geometrical
proximity information embedded in the spanning graph [12],
similar to what Zhou [17] does for RSMT. That is, consider
the edges connected to the nearest neighbor (NN) vertex of the
target vertex in each octant [Fig. 13(a)]. Therefore, candidate
edges are in a total number of O(n) and can be obtained in
O(n log n) time [17].

The second way adopts an R-tree [41], which stores the
bounding boxes of all the edges. For a target vertex vi with
parent v′i, we query candidate edges by the Manhattan circle
centered at vi and with a radius of dG(vi, v′i) [Fig. 13(b)]. Here,
an edge outside the Manhattan circle is unable to save wire-
length. Compared with using nearest neighbors, querying by
R-tree has two strengths. First, it never misses any candidate
that can reduce wirelength. Meanwhile, a “good” candidate
edge may be blocked by other vertices in the spanning graph.
For example, for the tree in Fig. 14(b), SCES that connects tar-
get vertex v1 to candidate edge v4v5 can lead to an improved
tree [Fig. 14(c)]. Note that connecting v1 to edge v3v4 also
reduces wirelength, but it causes detour and may violate the
shallowness constraint for the path from v1 to the root. Here,
the method of nearest neighbors cannot identify edge v4v5 as
a candidate for v1 because v4 is blocked by v3 in the span-
ning graph. With the help of R-tree query, the candidate edge
v4v5, however, can be easily obtained. Second, R-tree usually
results fewer candidate edges and saves runtime, especially
for vertex with shorter parent edge (recall Fig. 13). Therefore,

TABLE VI
ICCAD 2015 BENCHMARK STATISTICS

R-tree-based SCES is used in our default flow. Besides, it can
be iterated to accumulate wirelength improvement [Fig. 14(d)].

Besides [16] and [17], SCES also recalls the detour-aware
Steinerization (DAS) in PD-II [5]. DAS also restricts the sub-
stituted edge to the parent edge of the target vertex. However,
SCES and DAS have twofold differences. First, DAS uses
nearest neighbors to identify candidate edges. Even though
the NN graph in DAS is not exactly the spanning graph, it
also suffers from the two aforementioned problems. Second,
it only constrains the path length degradation on the target
vertex vi, without considering its impact to the downstream
vertices [i.e., dT(r, vi) ≤ 0.5 · maxu∈V dT(r, u) instead of our
�PL ≤ slack(T(vi))]. That is, the path length of a vertex
may be degraded several times due to its ancestors without
constraint on such accumulation.

SCES is performed after SR due to two reasons. First, SR
mostly reduces path length and never degrades path length,
which slacks the shallowness constraint for SCES. Second,
SCES by R-tree is a generalization of IEC and L-/Z-shape
edge substitution. It explores a larger solution space but also
requires more runtime. Conducting SR first will trigger SCES
fewer times and save the total runtime.

VI. EXPERIMENTAL RESULTS

We implement SALT as well as ES [2], CL [24],
ABP/BRBC [28], [29], KRY [30], PD [32], and Bonn [37]
algorithms in C++, while the source code of FLUTE [19] is
obtained from the authors. For a low-degree net, the idea of
FLUTE has been extended to generate all the RSMTs instead
of just one [43]. Among all the RMSTs, the shallowest one
can be selected to serve as a better reference. We obtain the
look-up table files from the authors. Moreover, the results of
PD-II [5]3 are provided by the authors.

Benchmarks of the ICCAD 2015 Contest [44] are used
for a comprehensive evaluation and comparison. The bench-
mark statistics are shown in Table VI. By ignoring 2-pin and
3-pin nets, which are trivial, the batch test covers around 1.3
million nets in total. Experiments are performed on a 64-bit
Linux workstation with Intel Xeon 3.4 GHz CPU and 32 GB
memory. A single thread is used for simplicity, in spite that
different nets can be routed with SALT in parallel.

3Here, PD-II denotes the complete flow in [5]. It is the PD construc-
tion followed by the spanning tree refinement, Steinerization, the Steiner tree
refinement, and a meta-heuristic. The meta-heuristic runs FLUTE in parallel.
If FLUTE is better in both wirelength and path lengths, it is output. In the
original paper, PD-II stands for PD with spanning tree refinement.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 24,2020 at 02:12:28 UTC from IEEE Xplore. Restrictions apply.

1226 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 6, JUNE 2020

(a) (b) (c)

(d) (e) (f)

Fig. 15. Effectiveness of post processing shown by shallowness–lightness and delay-lightness tradeoff on nets of various scales. (a) Shallowness–lightness
on nets with 4–7 pins. (b) Shallowness–lightness on nets with 8–15 pins. (c) Shallowness–lightness on nets with 16–31 pins. (d) Shallowness–lightness on
nets with 32+ pins. (e) Shallowness–lightness on all nets. (f) Delay-lightness on all nets.

In the batch test, ε is set to 20 values ranging from 0 to
73.895 (mainly a geometric sequence 0.05×1.5i) to cover the
variation of different methods. The lightness metric is changed
to β ′ = [w(T)/w(FLUTE)] (instead of β = [w(T)/w(MST)]),
where FLUTE serves as a tighter baseline than MST. Besides,
a normalized Elmore delay metric γ , which assumes uniform
unit-length capacitance and resistance, is also used. For each
routing tree, delay γ is the longest Elmore delay among all
source-sink paths, which is then normalized by a delay lower
bound using the method in [37]. For each method and each ε,
we average the scores over all the nets.

A. Effectivenss of Post Processing

Table VII and Fig. 15 show the effectiveness of our post-
processing techniques, SR and SCES. The contributions of
the three SR techniques, IEC, LEF, and UES, are all shown.
Performance of both implementation of SCES, by NN and by
R-tree, is also presented.

As Table VII shows, SR simultaneously improves α, β ′,
and γ for every ε. Meanwhile, for a given tree, SCES gives
large improvement on lightness by possibly slightly sacrificing
shallowness (and delay). For example, when ε = 0.05, “SR +
SCES by R-tree” reduces the lightness of SR by 4.8% (from
1.0897 to 1.0376), with shallowness only increased by 0.14%
(from 1.0062 to 1.0076). In general, it is obvious from Fig. 15
that the Pareto frontiers are pushed toward the origin by both
SR and SCES. Regarding the two kinds of implementation of
SCES, R-tree achieves larger wirelength savings than NN due
to its more comprehensive scope.

Fig. 16. Runtime breakdown of SALT with post processing.

(a) (b) (c) (d)

Fig. 17. Sample runs of various algorithms (ε = 1). (a) ABP/BRBC (shal-
lowness α = 2.24 and lightness β ′ = 1.51). (b) KRY (α = 1.43, β ′ = 1.22).
(c) PD (α = 1.11, β ′ = 1.30). (d) Bonn (α = 1.22, β ′ = 1.87).

For nets with various pin numbers, the shallowness and
lightness gaps between RSMA and RSMT are enlarged as
net scales increase [see Fig. 15(a)–(d)]. SALT with “SR +
SCES by R-tree,” however, can always deliver a smooth
tradeoff between RSMA and RSMT. For low-degree nets,
the shallowest RSMT achieves much better α than FLUTE

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 24,2020 at 02:12:28 UTC from IEEE Xplore. Restrictions apply.

CHEN AND YOUNG: SALT: PROVABLY GOOD ROUTING TOPOLOGY BY NOVEL SALT ALGORITHM 1227

TABLE VII
EFFECTIVENESS OF POST PROCESSING

(a) (b)

Fig. 18. Comparing SALT with other routing tree construction methods. (a) Tradeoff between shallowness and lightness. (b) Tradeoff between delay and
lightness.

by enumerating all RSMTs [Fig. 15(a)]. However, after post
processing, SALT obtains almost the same α even when
β ′ is the minimum. Note that this is achieved without the
time-consuming enumeration.

Fig. 15(e) and (f) summarize the shallowness–lightness and
delay-lightness tradeoff for all nets. Note that as lightness β

increases, delay γ first decreases and then slightly goes up.
The reason is that larger β causes higher load capacitance for
the driving cell and thus more cell delay.

SALT is also very efficient. The runtime breakdown is
shown in Fig. 16. An O(n log n) runtime growth (with respect
to net scales) can be observed. Moreover, for the 1.3 million
nets in the ICCAD 2015 benchmark, SALT with post pro-
cessing spends 0.0654 ms for each net on average. That is, it
finishes routing all the eight benchmarks in 1.42 min with a
single thread under an ε.

B. Superiority Over Other Methods

First of all, to give the readers some understanding of other
routing tree construction methods, sample runs on the exam-
ple net are shown in Fig. 17. Tradeoff parameter ε is set
to 1. Recall that it implies a shallowness–lightness bound of

(a) (b)

Fig. 19. Comparing SALT with KRY on a 16-pin net of superblue1.
The tradeoff parameter ε leading to the smallest delay γ is picked. (a) KRY
(β ′ = 1.572, γ = 1.292). (b) SALT (β ′ = 1.098, γ = 1.994).

(1+ 2ε, 1+ [2/ε]) for ABP and (1+ε, 1+ [2/ε]) for KRY. In
PD, it means shallowness α ≤ 1+ε. In Bonn, which targets the
Elmore delay, the total tree capacitance is at most 1 + [2/ε]
times the minimum (i.e., lightness bound β̄ = 1 + [2/ε] if
pin capacitances are ignorable), while wire delay is at most a
factor of (1+ ε)2 compared to a lower bound.

Compared with all the other methods (including ABP, KRY,
ES, Bonn, PD, and PD-II), SALT shows superior performance,
which mostly leads to both smaller wirelength and shorter path
lengths. The average situation is illustrated by Fig. 18(a). It can

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 24,2020 at 02:12:28 UTC from IEEE Xplore. Restrictions apply.

1228 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 6, JUNE 2020

(a) (b)

Fig. 20. Comparing SALT with PD-II on high-pin nets (# pins ≥ 32). (a) Tradeoff between shallowness and lightness. (b) Tradeoff between total path length
and lightness.

be clearly observed that our method has the best Pareto frontier
between RSMT and RSMA.

Fig. 18(b) illustrates the delay and lightness of different
methods, where SALT still achieves a good tradeoff. Though
KRY may obtain a slightly smaller delay, the wirelength cost
is actually significant. Besides, the smaller Elmore delay there
is usually achieved by unnecessary long edges, which is much
less preferable than assigning the edge to a higher metal layer
or buffering. For example in Fig. 19, the longest path of SALT
(measured by Elmore delay) is the path from root r to pin v1.
Comparing with that in KRY, r − v1 path in SALT has the
same path length but drives more capacitance load before ver-
tex v2. KRY reduces the delay by connecting v2 to r directly
at the cost of wirelength. However, appropriate layer assign-
ment or buffering on r − v2 path will be more economical in
practice.

Lastly, we conduct a detailed comparison between SALT
and PD-II, a closest competitor among all other methods.
Alpert et al. [5] compare PD-II with the preliminary version
of SALT [33], which is without SCES. They use two metrics
to measure the path lengths. The first is our shallowness met-
ric α = max{[dT(r, v)/dG(r, v)]|v ∈ V}; the second is the total
path length normalized by the total shortest-path distance, i.e.,
([

∑
v∈V dT(r, v)]/[

∑
v∈V dG(r, v)]). There, PD-II wins SALT

in some cases, especially for nets with 32+ pins. The exper-
imental results of PD-II and SALT (with and without SCES)
on nets with 32+ pins are shown in Fig. 20. As we can see, if
without SCES, SALT loses PD-II in total path length (when
lightness β ′ is around 1.05–1.10). However, with the help of
SCES, SALT dominates PD-II. Regarding the shallowness–
lightness tradeoff, SALT is always superior to PD-II, even
without SCES.

VII. CONCLUSION

We describe a novel SALT construction method called
SALT, which is efficient and has the tightest bound over all the
state-of-the-art general-graph SLT algorithms. Applying SALT
to Manhattan space leads a smooth tradeoff between RSMT
and RSMA for VLSI routing. Cooperating with some post-
processing techniques, it achieves superior tradeoff between
path length (or delay) and wirelength, compared to both

(a) (b)

Fig. 21. Decomposed edge cost c(Lk, Lk+1). (a) Balanced case.
(b) Unbalanced case.

classical and recent routing tree construction algorithms. A
promising further work may be to integrate SALT into a com-
plete routing optimization flow. Another line of research is to
consider congestion when building the tree.

APPENDIX A
PROOF OF LEMMA 2

The proof is by induction. If z is a leaf, it is trivial by
making vi = vj = z. We then assume that the statement holds
for the two children zl and zr of z, and prove it for z.

Suppose first that |b(zl, zr)| ≤ s(zl, zr), i.e., w′(zzl) +
w′(zzr) = s(zl, zr). Let vi ∈ Leaves(zl) and vj ∈ Leaves(zr) be
two vertices that achieve s(zl, zr) = dG(vi, vj) − (dT(zl, vi) +
dT(zr, vj)). Therefore, dT(z, vi) + dT(z, vj) = w′(zzl) +
dT(zl, vi) + w′(zzr) + dT(zr, vj) = s(zl, zr) + dT(zl, vi) +
dT(zr, vj) = dG(vi, vj).

Otherwise, |b(zl, zr)| > s(zl, zr). Suppose w.l.o.g. that
w′(zzl) = 0. By the induction hypothesis, there are vi, vj ∈
Leaves(zl) such that dT(zl, vi)+dT(zl, vj) = dG(vi, vj). Hence,
dT(z, vi)+ dT(z, vj) = dT(zl, vi)+ dT(zl, vj) = dG(vi, vj). Note
that vi, vj ∈ Leaves(zl) ⊂ Leaves(z).

APPENDIX B
PROOF OF LEMMA 3

We start by decomposing c(Lk, Lk+1). There are two cases,
as Fig. 21 shows. First, suppose c(Lk, Lk+1) = s(Lk, Lk+1).

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 24,2020 at 02:12:28 UTC from IEEE Xplore. Restrictions apply.

CHEN AND YOUNG: SALT: PROVABLY GOOD ROUTING TOPOLOGY BY NOVEL SALT ALGORITHM 1229

Let vi ∈ Leaves(Lk) and vj ∈ Leaves(Lk+1) be two vertices
that achieve s(Lk, Lk+1). Therefore,

c(Lk, Lk+1) = s(Lk, Lk+1)

= dG
(
vi, vj

)− (
dT(Lk, vi)+ dT

(
Lk+1, vj

))

≤ dG
(
vi, vl(Lk)

)− dT(Lk, vi)
︸ ︷︷ ︸

within T(Lk)

+ W(l(Lk), f (Lk+1))︸ ︷︷ ︸
between T(Lk), T(Lk+1)

+ dG

(
vf(Lk+1), vj

)
− dT

(
Lk+1, vj

)

︸ ︷︷ ︸
within T(Lk+1)

(9)

where the last inequality holds due to triangle inequality.
Second, c(Lk, Lk+1) = |b(Lk, Lk+1)|. If b(Lk, Lk+1) ≥ 0, by

Lemma 1, ∀vp ∈ Leaves(Lk),∀vq ∈ Leaves(Lk+1)

c(Lk, Lk+1) = b(Lk, Lk+1) = t(Lk)− t(Lk+1)

= (
dG

(
r, vp

)− dT
(
Lk, vp

))− (
dG

(
r, vq

)− dT
(
Lk+1, vq

))

≤ dG
(
vp, vq

)− dT
(
Lk, vp

)+ dT
(
Lk+1, vq

)

≤ dG
(
vp, vl(Lk)

)− dT
(
Lk, vp

)

︸ ︷︷ ︸
within T(Lk)

+ W(l(Lk), f (Lk+1))
︸ ︷︷ ︸

between T(Lk), T(Lk+1)

+ dG

(
vf(Lk+1), vq

)
+ dT

(
Lk+1, vq

)

︸ ︷︷ ︸
within T(Lk+1)

. (10)

If b(Lk, Lk+1) < 0, the result is symmetric. Therefore, the part
decomposed from c(Lk, Lk+1) into T(Lk) is

Cr(Lk)

=

⎧
⎪⎨

⎪⎩

dG
(
vi, vl(Lk)

)− dT(Lk, vi), c(Lk, Lk+1) = s(Lk, Lk+1)

dG
(
vp, vl(Lk)

)− dT
(
Lk, vp

)
, c(Lk, Lk+1) = b(Lk, Lk+1)

dG
(
vq, vl(Lk)

)+ dT
(
Lk, vq

)
, c(Lk, Lk+1) = −b(Lk, Lk+1)

(11)

where indices i is fixed while p and q are flexible. Meanwhile,
there is Cl(Lk), which is decomposed from c(Lk−1, Lk) and can
be calculated similarly. The weight sum within T(Lk) is then
C(Lk) = Cl(Lk)+ Cr(Lk).

We will prove C(Lk) ≤ W(f (Lk), l(Lk)), which has three
cases.

Case 1: Cl(Lk) and Cr(Lk) both contain minus. Then
C(Lk) = dG(vf (Lk), vj)−dT(Lk, vj)+dG(vi, vl(Lk))−dT(Lk, vi).
When j ≤ i, it is obvious. Otherwise, since dT(Lk, vj) +
dT(Lk, vi) ≥ dT(vi, vj) ≥ dG(vi, vj)

C(Lk) ≤ dG
(
vf (Lk), vj

)+ dG
(
vi, vl(Lk)

)− dG
(
vi, vj

)

≤ dG
(
vf (Lk), vi

)+ dG
(
vi, vj

))+ dG
(
vi, vl(Lk)

)

≤ W(f (Lk), l(Lk)). (12)

Case 2: Only one of Cl(Lk) and Cr(Lk) contains
minus. Suppose w.l.o.g. that Cl(Lk) does, then C(Lk) =
dG(vf (Lk), vq) + dT(Lk, vq) + dG(vi, vl(Lk)) − dT(Lk, vi). By
setting q = i

C(Lk) = dG
(
vf (Lk), vi

)+ dG
(
vi, vl(Lk)

) ≤ W(f (Lk), l(Lk)).

(13)

Case 3: Neither of Cl(Lk) and Cr(Lk) contains minus.
That is, C(Lk) = dG(vf (Lk), vq)+ dT(Lk, vq)+ dG(vp, vl(Lk))+

dT(Lk, vp). By Lemma 2, there exist f (Lk) ≤ q ≤ p ≤ l(Lk)

such that

C(Lk) = dG
(
vf (Lk), vq

)+ dG
(
vq, vp

)+ dG
(
vp, vl(Lk)

)

≤ W(f (Lk), l(Lk)). (14)

By (9), (10), and C(Lk) ≤ W(f (Lk), l(Lk)), the proof is
done.

APPENDIX C
PROOF OF LEMMA 5

First, n is assumed to be the power of 2. Indeed, we can
duplicate r into 2�log n� −n new vertices if it is not. Besides, if
�log θ� ≥ log n, it is trivial by Theorem 2. Hence, we assume
that �log θ� < log n.

Let E′i ⊆ E′ denote the set of edges added during the ith
iteration (1 ≤ i ≤ log n), W ′i denote

∑
e∈E′i w′(e), Leaves(e)

denote the set of leaf vertices in the downstream from an edge
e. Since T is SPT and |Leaves(e)| = 2i−1 for e ∈ E′i

∑

v∈V\{r}
dG(r, v) =

∑

v∈V\{r}
dT(r, v) =

log n∑

i=1

∑

e∈Ei

|Leaves(e)|w′(e)

=
log n∑

i=1

2i−1 ·W ′i ≥
log n∑

i=�log θ�+1

2i−1 ·W ′i ≥ θ

log n∑

i=�log θ�+1

W ′i .

(15)

Therefore,
∑log n

i=�log θ�+1 W ′i ≤ η since
∑

v∈V\{r} dG(r, v) ≤ θ ·η.
Together with Lemma 4

w(T) =
log n∑

i=1

W ′i =
�log θ�∑

i=1

W ′i +
log n∑

i=�log θ�+1

W ′i

≤ �log θ� · w(MST(G))+ η. (16)

ACKNOWLEDGMENT

The authors would like to thank Dr. K. Han,
Dr. W.-K. Chow, and the other authors of PD-II [5] for
providing their detailed results and helpful discussions. They
would also like to thank Prof. S. Held for his constructive
comments on the preliminary version of this paper.

REFERENCES

[1] M. Elkin and S. Solomon, “Steiner shallow-light trees are exponentially
lighter than spanning ones,” in Proc. IEEE Symp. Found. Comput. Sci.,
2011, pp. 373–382.

[2] M. Elkin and S. Solomon, “Steiner shallow-light trees are exponen-
tially lighter than spanning ones,” SIAM J. Comput., vol. 44, no. 4,
pp. 996–1025, 2015.

[3] I. L. Markov, “Limits on fundamental limits to computation,” Nature,
vol. 512, no. 7513, pp. 147–154, 2014.

[4] H. Esmaeilzadeh, E. Blem, R. S. Amant, K. Sankaralingam, and
D. Burger, “Power challenges may end the multicore era,” Commun.
ACM, vol. 56, no. 2, pp. 93–102, 2013.

[5] C. J. Alpert et al., “Prim-Dijkstra revisited: Achieving superior timing-
driven routing trees,” in Proc. ACM Int. Symp. Phys. Design, 2018,
pp. 10–17.

[6] J. Cong, L. He, C.-K. Koh, and P. H. Madden, “Performance
optimization of VLSI interconnect layout,” Integr. VLSI J., vol. 21,
nos. 1–2, pp. 1–94, 1996.

[7] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction
to Algorithms. Cambridge, MA, USA: MIT Press, 2009.

[8] M. Hanan, “On Steiner’s problem with rectilinear distance,” SIAM J.
Appl. Math., vol. 14, no. 2, pp. 255–265, 1966.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 24,2020 at 02:12:28 UTC from IEEE Xplore. Restrictions apply.

1230 IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, VOL. 39, NO. 6, JUNE 2020

[9] M. R. Garey and D. S. Johnson, “The rectilinear Steiner tree problem is
NP-complete,” SIAM J. Appl. Math., vol. 32, no. 4, pp. 826–834, 1977.

[10] D. M. Warme, P. Winter, and M. Zachariasen, “Exact algorithms for
plane Steiner tree problems: A computational study,” in Advances in
Steiner Trees. Boston, MA, USA: Springer, 2000, pp. 81–116.

[11] F. K. Hwang, “On Steiner minimal trees with rectilinear distance,” SIAM
J. Appl. Math., vol. 30, no. 1, pp. 104–114, 1976.

[12] H. Zhou, N. Shenoy, and W. Nicholls, “Efficient minimum spanning tree
construction without delaunay triangulation,” Inf. Process. Lett., vol. 81,
no. 5, pp. 271–276, 2002.

[13] J.-M. Ho, G. Vijayan, and C.-K. Wong, “New algorithms for the recti-
linear Steiner tree problem,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 9, no. 2, pp. 185–193, Feb. 1990.

[14] A. B. Kahng and G. Robins, “A new class of iterative Steiner tree heuris-
tics with good performance,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 11, no. 7, pp. 893–902, Jul. 1992.

[15] J. Griffith, G. Robins, J. S. Salowe, and T. Zhang, “Closing
the gap: Near-optimal Steiner trees in polynomial time,” IEEE
Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 13, no. 11,
pp. 1351–1365, Nov. 1994.

[16] M. Borah, R. M. Owens, and M. J. Irwin, “An edge-based heuristic
for Steiner routing,” IEEE Trans. Comput.-Aided Design Integr. Circuits
Syst., vol. 13, no. 12, pp. 1563–1568, Dec. 1994.

[17] H. Zhou, “Efficient Steiner tree construction based on spanning graphs,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 23, no. 5,
pp. 704–710, May 2004.

[18] A. B. Kahng, I. I. Măndoiu, and A. Z. Zelikovsky, “Highly scalable algo-
rithms for rectilinear and octilinear Steiner trees,” in Proc. IEEE/ACM
Asia South Pac. Design Autom. Conf., 2003, pp. 827–833.

[19] C. Chu and Y.-C. Wong, “FLUTE: Fast lookup table based rectilin-
ear Steiner minimal tree algorithm for VLSI design,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 27, no. 1, pp. 70–83,
Jan. 2008.

[20] W. Shi and C. Su, “The rectilinear Steiner arborescence problem is
NP-complete,” SIAM J. Comput., vol. 35, no. 3, pp. 729–740, 2005.

[21] L. Nastansky, S. M. Selkow, and N. F. Stewart, “Cost-minimal trees
in directed acyclic graphs,” Math. Methods Oper. Res., vol. 18, no. 1,
pp. 59–67, 1974.

[22] J. Cong, A. B. Kahng, and K.-S. Leung, “Efficient algorithms for the
minimum shortest path Steiner arborescence problem with applications
to VLSI physical design,” IEEE Trans. Comput.-Aided Design Integr.
Circuits Syst., vol. 17, no. 1, pp. 24–39, Jan. 1998.

[23] S. K. Rao, P. Sadayappan, F. K. Hwang, and P. W. Shor, “The rec-
tilinear Steiner arborescence problem,” Algorithmica, vol. 7, nos. 1–6,
pp. 277–288, 1992.

[24] J. Córdova and Y.-H. Lee, “A heuristic algorithm for the rectilinear
Steiner arborescence problem,” Dept. Comput. Inf. Sci., Univ. Florida,
Gainesville, FL, USA, Rep. TR-94-025, 1994.

[25] J. Cong, K.-S. Leung, and D. Zhou, “Performance-driven interconnect
design based on distributed RC delay model,” in Proc. ACM/IEEE
Design Autom. Conf., 1993, pp. 606–611.

[26] M. J. Alexander and G. Robins, “New performance-driven FPGA routing
algorithms,” IEEE Trans. Comput.-Aided Design Integr. Circuits Syst.,
vol. 15, no. 12, pp. 1505–1517, Dec. 1996.

[27] M. Pan, C. Chu, and P. Patra, “A novel performance-driven topology
design algorithm,” in Proc. IEEE/ACM Asia South Pac. Design Autom.
Conf., 2007, pp. 244–249.

[28] B. Awerbuch, A. Baratz, and D. Peleg, “Efficient broadcast and light-
weight spanners,” Dept. Appl. Math. Comput. Sci., Weizmann Inst. Sci.,
Rehovot, Israel, Rep. CS92-22, 1992.

[29] J. Cong, A. B. Kahng, G. Robins, M. Sarrafzadeh, and C.-K. Wong,
“Provably good performance-driven global routing,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 11, no. 6, pp. 739–752,
Jun. 1992.

[30] S. Khuller, B. Raghavachari, and N. Young, “Balancing minimum
spanning trees and shortest-path trees,” Algorithmica, vol. 14, no. 4,
pp. 305–321, 1995.

[31] S. Held and D. Rotter, “Shallow-light Steiner arborescences with ver-
tex delays,” in Proc. Int. Conf. Integer Program. Comb. Optim., 2013,
pp. 229–241.

[32] C. J. Alpert, T. Hu, J. Huang, A. B. Kahng, and D. Karger, “Prim-
Dijkstra tradeoffs for improved performance-driven routing tree design,”
IEEE Trans. Comput.-Aided Design Integr. Circuits Syst., vol. 14, no. 7,
pp. 890–896, Jul. 1995.

[33] G. Chen, P. Tu, and E. F. Young, “SALT: Provably good routing topology
by a novel Steiner shallow-light tree algorithm,” in Proc. IEEE/ACM Int.
Conf. Comput.-Aided Design, 2017, pp. 569–576.

[34] C. Bartoschek, S. Held, J. Maßberg, D. Rautenbach, and J. Vygen, “The
repeater tree construction problem,” Inf. Process. Lett., vol. 110, no. 24,
pp. 1079–1083, 2010.

[35] S. Held and B. Rockel, “Exact algorithms for delay-bounded Steiner
arborescences,” in Proc. ACM/IEEE Design Autom. Conf., 2018, p. 44.

[36] R. Scheifele, “RC-aware global routing,” in Proc. IEEE/ACM Int. Conf.
Comput.-Aided Design, 2016, p. 21.

[37] R. Scheifele, “Steiner trees with bounded RC-delay,” Algorithmica,
vol. 78, no. 1, pp. 86–109, 2017.

[38] S. Held et al., “Global routing with timing constraints,” IEEE Trans.
Comput.-Aided Design Integr. Circuits Syst., vol. 37, no. 2, pp. 406–419,
Feb. 2018.

[39] S. Solomon, “Euclidean Steiner shallow-light trees,” in Proc. Int. Symp.
Comput. Geometry, 2014, p. 454.

[40] S. Solomon, “Euclidean Steiner shallow-light trees,” J. Comput.
Geometry, vol. 6, no. 2, pp. 113–139, 2015.

[41] A. Guttman, “R-trees: A dynamic index structure for spatial searching,”
in Proc. ACM SIGMOD Conf., 1984, pp. 47–57.

[42] K. D. Boese, A. B. Kahng, and G. Robins, “High-performance routing
trees with identified critical sinks,” in Proc. ACM/IEEE Design Autom.
Conf., 1993, pp. 182–187.

[43] S.-E. D. Lin and D. H. Kim, “Construction of all rectilinear Steiner
minimum trees on the Hanan grid,” in Proc. ACM Int. Symp. Phys.
Design, 2018, pp. 18–25.

[44] M.-C. Kim, J. Hu, J. Li, and N. Viswanathan, “ICCAD-2015 CAD con-
test in incremental timing-driven placement and benchmark suite,” in
Proc. IEEE/ACM Int. Conf. Comput.-Aided Design, 2015, pp. 921–926.

Gengjie Chen received the B.Sc. degree from
the Department of Electronic and Communication
Engineering, Sun Yat-sen University, Guangzhou,
China, in 2015. He is currently pursuing the Ph.D.
degree with the Department of Computer Science
and Engineering, Chinese University of Hong Kong,
Hong Kong.

His current research interests include combinato-
rial optimization, numerical optimization, and elec-
tronic design automation.

Mr. Chen was a recipient of First Place at the
ACM SIGDA Student Research Competition in 2018, the Best Paper Award at
ICCAD 2017, the Hong Kong Ph.D. Fellowship in 2015, and six ICCAD/ISPD
Contest Awards.

Evangeline F. Y. Young received the B.Sc. degree
in computer science from the Chinese University of
Hong Kong (CUHK), Hong Kong, and the Ph.D.
degree from the University of Texas at Austin,
Austin, TX, USA, in 1999.

She is currently a Professor with the Department
of Computer Science and Engineering, CUHK.
She researches actively on floorplanning, place-
ment, routing, DFM, and EDA on physical design
in general. Her current research interests include
optimization, algorithms, and very large scale

integration CAD.
Dr. Young was a recipient of the Best Paper Awards from ICCAD 2017,

ISPD 2017, SLIP 2017, and FCCM 2018, and several championships and
prizes in renowned EDA contests, including the 2018, 2016, 2015, 2013,
and 2012 CAD Contests at ICCAD, DAC 2012, and ISPD 2018, 2017,
2016, 2015, 2011, and 2010 with her research group. She has served on
the organization committees of ISPD, ARC, and FPT and on the pro-
gram committees of conferences, including DAC, ICCAD, ISPD, ASP-DAC,
SLIP, DATE, and GLSVLSI. She also served on the editorial boards of
the IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED

CIRCUITS AND SYSTEMS, ACM TODAES, and Integration, the VLSI Journal.

Authorized licensed use limited to: Chinese University of Hong Kong. Downloaded on May 24,2020 at 02:12:28 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Helvetica
 /Helvetica-Bold
 /HelveticaBolditalic-BoldOblique
 /Helvetica-BoldOblique
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /Times-Bold
 /Times-BoldItalic
 /Times-Italic
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryITCbyBT-MediumItal
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Recommended" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

