
VLSI Routing:

Seeing Nano Tree in Giga Forest

CHEN, Gengjie

A Thesis Submitted in Partial Fulfilment

of the Requirements for the Degree of

Doctor of Philosophy

in

Computer Science and Engineering

The Chinese University of Hong Kong

June 2019

Thesis Assessment Committee

Professor XU Qiang (Chair)

Professor YOUNG Fung Yu (Thesis Supervisor)

Professor YU Bei (Committee Member)

Professor MAK Wai Kei (External Examiner)

Abstract

We are using nanometer-sized transistors and gigahertz clock frequency in very large scale

integration (VLSI). Under such extreme conditions, timing, power, manufacturability and

reliability are all crucial issues in VLSI design. Tree structure is the major topology used

in VLSI routing. Optimizing the tree and forest on a chip is essential for a successful

design flow. However, the problems are in general difficult in two aspects, single-net

routing and multiple-net routing. The thesis will discuss both of them.

For many single-net routing problems, finding an optimal tree from a huge candidate

forest is already NP-hard. Two fundamental multi-objective problems are studied here.

In signal net, shallowness (path length) implies wire delay, while lightness (wirelength)

implies routing resource usage, power, cell delay and wire delay. Shallowness and lightness

are both needed but they contradict with each other. We propose an effective algorithm to

build Steiner shallow-light tree and trade off between the two. Regarding clock net, skew

is the maximum difference in signal arrival time among sinks, which should be minimized.

Zero-skew tree (ZST) is too expensive in wirelength and also unnecessary, but can help

to build bounded-skew tree (BST). We prove the equivalence between the wirelength

minimization of ZST and the diameter sum minimization of hierarchical clustering. Based

on this insight, better algorithms for both ZST and BST are proposed.

Regarding multiple-net routing, a large number of trees need to be built on chip by

sharing resources and need to be well coordinated for avoiding conflicts. Three problems

are solved in this aspect in this thesis. First, for detailed routing, a set of two-level

sparse data structures is designed to store the enormous 3D grid graph with runtime and

memory efficiency. An effective path search algorithm is also proposed to capture the

minimum-area constraint directly. Second, in the bus routing problem, the topologies of

all the bits in a bus need to be consistent. We propose to resolve it by routing all the

bits concurrently. Meanwhile, efficiency is achieved by a hierarchical scheme. Third, in

order to tackle the power issue in 3D ICs, tree-like liquid cooling network is optimized for

a better trade-off between thermal profile and pumping power.

i

摘摘摘要要要

我們在超大規模集成（VLSI）中使用納米級晶體管和千兆赫茲時鐘頻率。 在如此極

端的條件下，時序，功耗，可製造性和可靠性都是VLSI設計中的關鍵問題。 樹結構

是VLSI佈線中使用的主要拓撲。優化芯片上的樹和森林對於一個成功的設計流程至關

重要。 但是，在單網路由和多網路由兩個方面，問題一般都很困難。 論文將討論它

們。

對於許多單網佈線問題，從巨大的候選森林中尋找最佳樹已經是NP難的。 在信號

網中，淺度（路徑長度）意味著線路延遲，而輕度（線路長度）意味著佈線資源佔

用，功耗，信號延遲和線路延遲。 淺度和輕度都是必需的，但它們相互矛盾。 我們提

出了一種有效的算法來構建斯坦納淺輕樹並在兩者之間進行權衡。 關於時鐘網，時鐘

偏斜是信號到達時間的最大差異，應該最小化。 零偏斜樹（ZST）的線長太貴而且也

是不必要的，但可以幫助構建有界偏斜樹（BST）。 我們證明了ZST的線長最小化與

層次聚類的直徑和最小化之間的等價性。 基於這種見解，提出了更好的ZST和BST算

法。

對於多網佈線，需要通過共享資源在芯片上構建大量樹，並且需要很好地協調以避

免衝突。 本論文解決了這方面的三個問題。 首先，對於詳細佈線，設計了一組兩級稀

疏數據結構以時間和存儲高效的方式來存儲巨大三維網格圖。 還提出了一種有效的路

徑搜索算法來直接捕獲最小面積約束。 其次，在總線佈線問題中，總線中所有位的拓

撲需要保持一致。 我們提出通過同時佈所有位的線來解決它。 同時，通過層次方案實

現效率。 第三，為了解決三維芯片中的功率問題，樹狀液體冷卻網絡經過優化，可以

更好地在熱分佈和泵功率之間進行權衡。

ii

Acknowledgments

First of all, I sincerely thank my advisor, Prof. Evangeline F. Y. Young, for her guidance

and support over the years. Throughout my Ph.D. study, she not only encourages me

to explore challenging research problems that combine the beauty of algorithms with

practical needs, but also shares with me the precious experience and knowledge. This

thesis would be impossible without her warm advice and continuous encouragement.

I also want to express my grateful thanks to the rest of my doctoral committee,

Prof. Qiang Xu, Prof. Bei Yu, and Prof. Wai-Kei Mak, for their insightful comments and

constructive suggestions.

My sincere thanks also go to my fellow labmates: Dr. Jian Kuang, Dr. William Wing-

Kai Chow, Dr. Peishan Tu, Ka-Chun Lam, Jordan Chak-Wa Pui, Hang Zhang, Haocheng

Li, Sirius Chong Wing Cheung, Jingsong Chen, Bentian Jiang, Jinwei Liu, Xiaopeng

Zhang, and Dan Zheng. Thanks for all the helps from you and all the fun we had in the

last four years.

Last but not least, I am sincerely thankful to my parents, Jinhui Chen and Sufang

Chen, for their unconditional love. I am also deeply grateful for my wife, Yixuan Shang,

for everything. Thank you for being there for me from the very beginning.

This work is partially supported by the Hong Kong Ph.D. Fellowship Scheme.

iii

Contents

Contents iv

List of Figures viii

List of Tables xi

I Introduction and Background 1

1 Introduction 2

1.1 VLSI Design . 2

1.2 VLSI Routing Problem . 3

1.3 Overview of this Thesis . 4

2 Literature Review 6

2.1 Single-Net Routing . 6

2.1.1 Wirelength Minimization . 6

2.1.2 Trade-off Between Wirelength and Path Length 7

2.1.3 Trade-off Between Wirelength and Skew 9

2.2 Multiple-Net Routing . 10

2.2.1 Sequential and Concurrent Routing 10

2.2.2 Global Routing . 11

2.2.3 Detailed Routing . 12

2.2.4 Bus Routing . 12

2.2.5 3D IC Liquid Cooling Network . 13

II Single-Net Routing 16

3 Trade-off Between Wirelength and Path Length 17

3.1 Steiner Shallow-light Tree Algorithm . 18

3.1.1 Preliminaries . 18

3.1.2 Framework . 20

iv

Contents

3.1.3 Light Steiner Shortest-Path Tree 22

3.1.4 Bound Analysis . 25

3.2 Rectilinear Steiner Shallow-light Tree Algorithm 29

3.3 Safe Refinement . 31

3.3.1 Intersected Edge Canceling . 31

3.3.2 L-/Z-Shape Edge Flipping . 33

3.3.3 U-Shape Edge Shifting . 34

3.3.4 Order of Safe Refinement Techniques 35

3.4 Shallowness-Constrained Edge Substitution 35

3.5 Experimental Results . 39

3.5.1 Effectivenss of Post Processing . 40

3.5.2 Superiority over Other Methods . 40

4 Trade-off Between Wirelength and Skew 46

4.1 Zero-Skew Tree Properties . 46

4.1.1 Manhattan Circle . 47

4.1.2 Manhattan Bounding Circle . 48

4.1.3 ZST/DME by Manhattan Bounding Circle 51

4.1.4 ZST by Hierachical Clustering . 53

4.1.5 Proof of Theorem 4.3 . 54

4.2 Zero-Skew Tree Construction . 54

4.2.1 Efficient and Effective Iterative Merging 54

4.2.2 Other Approximation Algorithms 56

4.2.3 Optimal Dynamic Programming . 56

4.3 Bounded-Skew Tree Construction . 59

4.4 Experimental Results . 60

III Multiple-Net Routing 64

5 Detailed Routing 65

5.1 Preliminaries . 65

5.1.1 Routing Space . 65

5.1.2 Design Rules . 67

5.1.3 Problem Formulation . 67

5.2 Two-Level Sparse Data Structures . 68

5.2.1 Sparse Global Grid Graph . 69

5.2.2 Global Grid Graph Query by Look-up Table 71

5.2.3 Sparse Local Grid Graph . 74

5.3 Routing Algorithm . 76

v

Contents

5.3.1 Edge Cost in Local Grid Graph . 76

5.3.2 Minimum-Area-Captured Path Search 77

5.3.3 Rip-up and Reroute . 80

5.4 Parallelism . 80

5.5 Experimental Results . 84

5.5.1 Effectiveness of Quality Enhancement 84

5.5.2 Effectiveness of Runtime Reduction 86

5.5.3 Comparison with State-of-the-Art Detailed Routers 89

6 Bus Routing 91

6.1 Preliminaries . 92

6.1.1 Evaluation Metrics . 92

6.1.2 Problem Formulation . 94

6.2 Algorithms . 94

6.2.1 Bus-based Grid Graph (BGG) . 96

6.2.2 Topology-Aware Path Planning (TAP) 97

6.2.3 Track Assignment for Bits (TAB) 101

6.2.4 Rip-up and Reroute Scheme . 103

6.3 Experimental Results . 103

7 3D IC Liquid Cooling Network 106

7.1 Thermal Modeling . 106

7.1.1 Preliminaries . 107

7.1.2 Pressure and Flow Rate . 107

7.1.3 4RM-Based Thermal Modeling . 108

7.1.4 Faster 2RM-Based Thermal Modeling 110

7.2 Problem Formulations . 111

7.2.1 General Considerations . 112

7.3 Minimizing Pumping Power . 113

7.3.1 Relationship Between Pressure and Temperature 114

7.3.2 Network Evaluation . 115

7.3.3 Hierarchical Tree-like Cooling Network 116

7.3.4 Network Topology Optimization . 116

7.4 Minimizing Thermal Gradient . 118

7.5 Experimental Results . 119

7.5.1 Effectiveness of 2RM Thermal Modeling 120

7.5.2 Effectiveness of Design Optimization 121

Conclusion 124

vi

Contents

Bibliography 126

Publication List 139

vii

List of Figures

1.1 The VLSI design flow. 3

2.1 Routing topologies with varied shallowness α and lightness β. 8

2.2 3D IC using microchannel-based liquid cooling network. 14

3.1 Sample run of ES. 20

3.2 Sample run of SALT. 21

3.3 During Steiner SPT construction, neighboring vertices in L are merged pair

by pair into Steiner vertices in L′. 23

3.4 Decomposed edge cost c(Lk, Lk+1). 26

3.5 Sample run of rectilinear SALT. 30

3.6 Intersected edge canceling. 32

3.7 L-shape edge flipping. 33

3.8 Z-shape edge flipping by iterative L-shape flipping. 34

3.9 (Canonical) U-shape edge shifting. 34

3.10 eneral U-shape edge shifting. 34

3.11 L-/Z-shape edge flipping may make the edge intersection shrank or even

disappeared. 35

3.12 Shallowness-constrained edge substitution (SCES). 36

3.13 Two ways to find the candidate edges for SCES. 37

3.14 Insufficiency of SCES based on nearest neighbors. 38

3.15 Effectiveness of post processing shown by shallowness-lightness and delay-

lightness trade-off on nets of various scales. 42

3.16 Runtime breakdown of SALT with post processing. 43

3.17 Sample runs of various algorithms . 43

3.18 Comparing SALT with other routing tree construction methods. 44

3.19 Comparing SALT with KRY on a 16-pin net of superblue1. 45

3.20 Comparing SALT with PD-II on high-pin nets (# pins ≥ 32). 45

4.1 Equivalence between zero-skew tree (ZST) and hierarchical clustering (HC). 47

4.2 Manhattan circle C(o, r) is an internally tangent circle of C ′(o′, r′). 48

viii

List of Figures

4.3 Manhattan bounding circle (MBC), tilted bounding box (TBB), and center

segment for a set of points P . 49

4.4 Relationship between two point sets Pa and Pb. 50

4.5 1D example showing the impact of different preferences in iterative merging. 55

4.6 Trie for storing and retrieving the optimal sub-ZST/HC. 57

4.7 Runtime of Dim Sum. 61

4.8 Wirelength comparison of ZST methods on random nets. 62

4.9 Comparison between BST/DME and our BST construction method. . . . 63

5.1 An example 3D detailed routing grid graph. 66

5.2 Examples of spacing violations. 67

5.3 Overview of the two-level grid graph data structures. 68

5.4 Wire-obstacle and wire-pin conflicts stored in global grid graph. 70

5.5 Query the violations on candidate vias due to the previously routed edges

in global grid graph. 72

5.6 Long edges by removing redundant vertices. 75

5.7 Capture minimum area cost in path search 77

5.8 Better parallelism by within-batch balancing (WBB), inter-batch balancing

(IBB), and batch with small nets first (BSF). 83

5.9 Solution of Dr. CU on ispd18 test10. 86

5.10 Improving routing quality by RRR. 86

5.11 Improving routing quality by using wrong-way edges, minimum-area-captured

path search, and history cost. 87

5.12 Speed-up by pre-computing via-obstacle and via-pin conflicts. 87

5.13 Speed-up by parallelism. 88

5.14 Runtime breakdown on ispd18 test10. 88

5.15 Spacing-to-short conversion done by some other detailed routers. 88

5.16 Comparison with state-of-the-art detailed routers 90

6.1 A toy bus. 92

6.2 A bus with four pins and eight bits . 93

6.3 Four types of topology failures. 94

6.4 Overall flow of MARCH. 95

6.5 An example of computing edge capacity. 96

6.6 Result of topology-aware path planning (TAP). 97

6.7 A 4× 4 switching nodes. 99

6.8 Spacing violation cost estimation. 101

6.9 An example of track assignment for bits (TAB). 102

7.1 Pressure and flow rate distribution in a cooling network 107

ix

List of Figures

7.2 4RM model with three kinds of heat transfer. 109

7.3 2RM model with discretization of 4× 4 basic cells. 110

7.4 Relation between temperatures and Psys in a network. 114

7.5 Cooling network with (a) uni-modal f and (b) monotonically decreasing f . 116

7.6 A tree-like cooling network on 23× 51 basic cells. 117

7.7 Eight types of global flow directions. 118

7.8 Three types of branches. 118

7.9 Accuracy and runtime of 2RM compared to 4RM. 121

7.10 Temperature result of case 1 for pumping power minimization. 122

7.11 Temperature result of case 1 for thermal gradient minimization. 123

x

List of Tables

2.1 Spanning and Steiner Shallow-Light Tree 7

3.1 Historical Progress of Shallow-Light Trees 17

3.2 Notations Used in ES . 19

3.3 Additional Notations Used in SALT . 21

3.4 Additional Notations Used in Light Steiner SPT 23

3.5 ICCAD 2015 Benchmark Statistics . 39

3.6 Effectiveness of Post Processing . 41

4.1 Wirelength Comparison of ZST Methods on Realistic Benchmarks (unit:

µm) . 61

5.1 Statistics of Via-Obstacle and Via-Pin Conflicts on ispd18 test10 . . . 71

5.2 Metric Weights in ISPD 2018 Contest Benchmarks 84

5.3 ISPD 2018 Contest Benchmark Characteristics 84

5.4 Comparison with State-of-the-Art Academic Detailed Routers on ISPD

2018 Contest Benchmarks . 85

6.1 ICCAD 2018 Benchmark Statistics . 103

6.2 Detailed Results of MARCH . 104

6.3 Comparison with Winners of ICCAD 2018 Contest 105

7.1 Four-stage Optimization for Pumping Power Minimization 118

7.2 Three-stage Optimization for Thermal Gradient Minimization 119

7.3 ICCAD 2015 Benchmark Statistics . 120

7.4 Result for Pumping Power Minimization (Problem 7.1) 122

7.5 Result for Thermal Gradient Minimization (Problem 7.2) 122

xi

Part I

Introduction and Background

1

Chapter 1

Introduction

1.1 VLSI Design

The very large scale integration (VLSI) technology is the core of today’s electronic equip-

ment and the foundation of our digital world. Servers, personal computers, mobile phones,

wearable devices, and other computing equipment, which are indispensable parts of mod-

ern life, are all impossible without the explosive development of the VLSI technology

during the past decades. Moreover, cars, airplanes, home appliances, cameras, indus-

trial pipelines, and many other traditional industries, have been revolutionized by the

continuous digitalization enabled by VLSI technology.

Nowadays, we are using nanometer-sized transistors and gigahertz clock frequency in

the VLSI design. Under such extreme conditions, timing, power, manufacturability and

reliability are all crucial issues in VLSI design. For example, 50% – 80% of gates in the

high-performance integrated circuit (IC) today are repeaters, which do not perform useful

computation but work for timing closure [1]; over 50% of the chip at around 7nm will be

powered off and cannot be utilized due to the power constraint [2]; the power-sensitive

applications in mobile and the Internet of Things become ubiquitous [3].

The process of designing and optimizing a VLSI circuit is multi-objective and compli-

cated. From architectural design all the way to signoff, it can be roughly separated into

several steps [4], as Figure 1.1 shows.

� Architectural and register-transfer level design converts system specification

to hardware description language (HDL) like Verilog or VHDL.

� Logic synthesis maps HDL to a gate-level netlist.

� Placement determines the spatial locations of all the instantiated design compo-

nents (e.g., gates, transistors, macros).

� Routing assigns routing resources, usually the wires and vias across a stack of

metal layers, to connect all the nets.

2

Chapter 1. Introduction

Placement

Routing

Signoff

Architectural and register-

transfer-level design

Logic synthesis

ENTITY test is

port a: in bit;

end ENTITY test;

DRC

LVS

ERC

Fabrication

Figure 1.1: The VLSI design flow.

� Signoff is to fully verify the electrical and logical functionality of the design and

ensure its correctness.

The process of placement and routing is usually called the physical design, or back-end

design, as a whole. Modern VLSI design has become so complex that it largely relies on

electronic design automation (EDA) tools, which provide the algorithms and software for

assisting or even automating the design process. The algorithms for VLSI routing are the

focus of this thesis.

1.2 VLSI Routing Problem

Tree structure is the major topology used in VLSI routing. Optimizing the tree and the

forest is essential for a successful design flow [5]. It directly determines various eventual

design metrics such as the power profile, timing closure, manufacturability and reliability.

However, VLSI routing problems are in general challenging. First, even for many single-

net routing problems, finding an optimal tree from a huge candidate forest is already

NP-hard. Second, for multiple-net routing, a large number of trees need to be built on

the chip by sharing resources and to be well coordinated for avoiding conflicts.

3

Chapter 1. Introduction

Solving the subproblem of routing a single net is the foundation of routing all the

nets of a chip. However, even though we ignore the resource competition among all the

nets here, the problem is still very challenging. Many basic NP-hard problems have been

studied by researchers for decades. Moreover, the problems are typically multi-objective

in nature even under a simplified model.

On top of the difficulties for the single-net routing, multiple-net routing needs to

resolve the congestion issue, i.e., the resource competition among the huge number of

nets. Because of its enormous computational complexity, multiple-net routing is usually

performed in two stages, global and detailed. In the global routing stage, the routing

space is split into an array of regular cells, where a coarse-grained routing solution is

generated. It optimizes wirelength, via count, routability, timing and other metrics with

a global view. Detailed routing, on the other hand, realizes the global routing solution by

considering exact metal shapes and positions. It takes care of many complicated detailed

design rules (e.g., parallel-run spacing, end-of-line spacing, cut spacing, minimum area,

etc).

1.3 Overview of this Thesis

The major limitations of the many previous works on VLSI routing are in three folds.

First, many works heavily rely on heuristics without any theoretical guarantee, which

means inferior average-case quality and unpredictable worst-case performance. Second,

step-after-step post-processing may be effective in some situations, but it is insufficient

for a comprehensive routing problem where many factors (e.g., power, timing, manufac-

turability) need to be simultaneously considered. Third, some methods cannot be scaled

to today’s chip with up to billions of transistors. The thesis proposes a set of solutions

by trying to overcome the limitations.

In Chapter 2 of this part, we will review the literature on VLSI routing, especially

those closely related to our contributions. The thesis is then organized into two major

parts.

In Part II, we study two fundamental problems for single-net routing with mathemati-

cal rigorousness. In Chapter 3, regarding the trade-off between wirelength and path length

in signal net, our proposed Steiner shallow-light tree algorithm achieves a best bound of

(1 + ε, 2 + dlog 2
ε
e) [6, 7]. In Chapter 4, we prove the equivalence between zero-skew tree

problem and hierarchical clustering problem for the clock tree. The new insight leads us

to simple yet more effective algorithms pursuing wirelength and skew [8].

In Part III, we propose two fast and high-quality routers for two multiple-net routing

problems beyond the relatively well-studied global routing problem. Special design rules

are satisfied together with other design rules in a correct-by-construction manner. Chap-

ter 5 describes a scalable framework with two-level sparse data structures and path search

4

Chapter 1. Introduction

capturing the nontrivial minimum area constraint is designed [9]. In order to meet the

topology consistency constraint in bus routing, an efficient maze router under a concurrent

and hierarchical scheme is proposed in Chapter 6 [10]. Moreover, Chapter 7 introduces

our method for optimizing the tree-like liquid cooling network to better trade-off between

the thermal profile and power consumption of 3D ICs [11].

5

Chapter 2

Literature Review

This chapter reviews the literature about VLSI routing in both single-net routing and

multiple-net routing.

2.1 Single-Net Routing

Among all the objectives optimized in the single-net routing problems, wirelength is the

most important one. It implies many things including routing resource usage (routability),

power consumption, cell delay and wire delay [12]. Meanwhile, the path lengths from the

source to sinks of the net have a huge impact on wire delay. For signal nets, both

wirelength and path length are important but they are usually contradicted with each

other, which should be properly balanced. Clock signal is distributed to synchronous

elements in a VLSI circuit. In a clock net, skew, the maximum difference in signal arrival

time among all sinks, should be small to ensure timing correctness. Skew should also be

optimized with a controlled wirelength overhead.

2.1.1 Wirelength Minimization

For spanning trees, the minimum spanning tree (MST) can be obtained by various clas-

sical algorithms like Prim’s and Kruskal’s algorithms in O(m + n log n) time [13]. For

rectilinear Steiner trees, the one with minimum tree weight is called a rectilinear Steiner

minimum tree (RSMT). The RSMT construction can be achieved by using Steiner nodes

on Hanan grid [14] and is NP-hard [15]. Besides the exponential-time exact algorithms

(e.g., GeoSteiner [16]), there are, however, many efficient heuristics achieving good or

even near optimal quality. First of all, the rectilinear MST (RMST) actually provides a

1.5-approximation [17] and can be constructed in O(n log n) time [18]. It also seeds many

RSMT heuristics. Ho et al. [19] give a linear-time dynamic programming to optimally

overlap the edges and reduce the wirelength for separable MSTs. The iterated 1-Steiner

(I1S) heuristic due to Kahng and Robins [20] iteratively inserts Steiner points with the

6

Chapter 2. Literature Review

Table 2.1: Spanning and Steiner Shallow-Light Tree

Shallowest Lightest Shallow light

Spanning
Spanning SPT MST Spanning

(O(m+ n log n)) (O(m+ n log n)) SLT

Steiner
Steiner SPT SMT Steiner
(NP hard) (NP hard) SLT

Rectilinear
Steiner

RSMA RSMT Rectilinear
(NP hard) (NP hard) Steiner SLT

largest wirelength saving. Griffith et at. [21] proposed a faster O(n3)-time implementa-

tion of I1S based on dynamic MST maintenance. The BOI algorithm proposed by Borah

et al. [22] repeatedly connects a vertex to a nearby edge and removes the longest edge of

the loop formed. Zhou [23] uses spanning graph [18] to help finding good candidates for

the edge substitution in BOI and thus improves the runtime to O(n log n) with small hid-

den constants. The O(n log2 n)-time batch greedy algorithm (BGA) by Kahng et al. [24]

is a batched version of the greedy triple contraction. Chu et al. present FLUTE, which

efficiently constructs RSMTs based on pre-computed look-up tables and net breaking in

O(n log n) time and is optimal for nets up to 9 pins [25].

2.1.2 Trade-off Between Wirelength and Path Length

For spanning trees, the shortest-path tree (SPT) can be constructed by Dijkstra’s algo-

rithm in O(m + n log n) time [26]. For rectilinear Steiner trees, the lightest one with all

paths from root being shortest is a rectilinear Steiner minimum arborescence (RSMA).

The RSMA construction is also NP-hard [27]. Approaches for optimal RSMAs include in-

teger programming [28] and dynamic programming [29]. AnO(n log n)-time 2-approximation

is first proposed by Rao et at. [30] and later generalized to all four quadrants by Córdova

and Lee [31]. There are also several other fast algorithms. Cong et al. [32] propose the

A-tree algorithm with safe moves and heuristic moves towards RSMA. Alexander and

Robins [33] adapt the iterative greedy insertion scheme of I1S to the RSMA problem.

Pan et al. [34] apply the table look-up and net breaking techniques in FLUTE to RSMA

construction.

The spanning/Steiner shallow-light tree (SLT) combines the objectives of shallow path

length and light tree weight together, as Table 2.1 and Figure 2.1 show. In a span-

ning/Steiner tree with shallowness α and lightness β, each path length is at most α times

the shortest-path distance, while the tree weight is β times the minimum tree weight. In

an (ᾱ, β̄)-SLT, α ≤ ᾱ and β ≤ β̄.

A spanning SLT approximates SPT and MST simultaneously, where the trade-off is

in the order of (1 + ε, O(1
ε
)). The ABP algorithm by Awerbuch et al. [35] and the BRBC

algorithm by Cong et at. [36] are in fact identical and provide a bound of (1 + 2ε, 1 + 2
ε
).

7

Chapter 2. Literature Review

(a) A net on a regular grid (b) Spanning SPT
(α = 13

13 , β = 182
39)

(c) RMST/RSMT
(α = 39

13 , β = 39
39)

(d) RSMA (α = 13
13 , β = 54

39) (e) Spanning SLT
(α = 17

13 , β = 61
39)

(f) Steiner SLT
(α = 17

13 , β = 44
39)

Figure 2.1: Routing topologies with varied shallowness α and lightness β (root is marked
by red).

The algorithm first constructs an MST and a Hamiltonian path according to the depth-

first tour of the MST. It then accumulates the distance along the Hamiltonian path and

identify a breakpoint whenever the accumulated distance becomes too long. On the graph

that unions the MST and the edges connecting all the breakpoints to the root, the SPT

is obtained and outputted. In this way, the distance between a breakpoint and the root

becomes the shortest-path distance. For other vertices, the path length is bounded.

After the ABP/BRBC algorithm, Khuller et al. [37] propose a beter algorithm, the

KRY algorithm. It also modifies an initial light topology towards a SLT. However, it

directly uses the MST itself as the initial topology and identifies breakpoints during a

depth-first tour on the MST. The KRY algorithm has a bound of (1 + ε, 1 + 2
ε
), which

is also proved to be the best possible one for spanning trees. It also provides a smooth

trade-off between SPT and MST controlled by ε, while ABP does not (e.g., a MST is not

implied when ε = +∞).

Besides, the PD algorithm due to Alpert et al. [38] smoothly trades off between SPT

and MST by a direct combination of Dijkstra’s and Prim’s algorithms. Note that both

Dijkstra’s and Prim’s algorithms start with the root vertex and iteratively add an unvisited

8

Chapter 2. Literature Review

vertex until visiting all vertices. In Prim’s algorithm, an unvisited vertex the closest to a

visited vertex is chosen, while Dijkstra’s algorithm prefers an unvisited vertex the closest

to the root. The PD algorithm achieves the trade-off by setting the preference to a

weighted sum of the objectives of the two algorithms. The approach has been widely used

in industry [3], but the resulted tree is not guaranteed to be a SLT.

Recently, Steiner SLTs are proved to be exponentially lighter than spanning ones by

Elkin and Solomon [39, 40]. The ES algorithm extends the ABP algorithm for spanning

SLTs to Steiner ones. Its main idea is still to accumulate the distance along a Hamiltonian

path and identify breakpoints. But breakpoints are then connected to the root by a

Steiner SPT instead of individual edges. It generates a Steiner (1 + ε, O(log 1
ε
))-SLT

with a time complexity of O(n2). The constants in the shallowness-lightness bound of

(1 + 2ε, 4 + 2dlog 2
ε
e) are, however, quite large (log denotes log2 in this thesis). In the

work [41], Held and Rotter study the problem of Steiner SLT with vertex delays (measured

by the number of bifurcations). When vertex delays are not taken into account, they

tighten the bound of ES to (1 + ε, 2 + dlog 2
ε
e) in 2D Manhattan space.

2.1.3 Trade-off Between Wirelength and Skew

There are in general two base formulations for clock tree construction, zero-skew tree

(ZST) and bounded-skew tree (BST).

Many methods have been proposed for building ZSTs, e.g., [42–48]. Among them,

deferred-merge embedding (ZST/DME) is a dynamic programming approach by Chao

et al. [44]. For a given topology, it outputs the locations of Steiner points achieving zero

skew and optimal wirelength under the linear or Elmore delay model. In ZST/DME, the

merging segment of a vertex is a set of possible placements of the vertex. The merging

segment of a sink is simply itself. The merging segment of a Steiner node (i.e., between two

merging segments) is a Manhattan arc (line segment with slope +1 or -1). There are two

phases in ZST/DME. In the first bottom-up phase, a tree of merging segments is computed

recursively. In the top-down phase, the merging point achieving the minimum wirelength

is picked according to the location of its parent Steiner node. For determining the ZST

topology, Greedy-DME, the DME-based greedy heuristics proposed by Edahiro [46], is

regarded as the best algorithm in practice (see [12, 48–50]). The key idea of the method

is simple. It iteratively merges the two merging segments with the smallest distance

between them until only a single merging segment remains. Several techniques have been

also proposed to accelerate the process and refine the result.

Nowadays, ZST is, however, not a good choice in practice due to two reasons. First,

ZST is too expensive in wirelength, which implies excessive power usage. Note that the

clock net can consume 40% of the overall chip power due to its high frequency and large

coverage [51]. Besides, longer wirelength usually comes with larger path divergence and

9

Chapter 2. Literature Review

suffers from more on-chip variations. Second, ZST topology is not necessary, considering

the large tolerance (due to buffer insertion and sizing [52,53]) and the widely-used useful-

skew optimization techniques [54, 55]. Nonetheless, ZST is still useful as it can serve as

the backbone of a BST [47,48].

Regarding BST, Cong et al. extend ZST/DME to BST/DME by generalizing the

merging segments to regions [50]. Due to the more complicated shapes of the merging

regions, BST/DME prunes many possibilities (e.g., restrict the merging point to the

boundary of a merging region or sample the interior points) and is not optimal for a given

topology. Besides, skew variation is allocated over all levels relatively by chance.

With theoretical interest, approximation algorithms are also proposed [47, 48]. The

approaches of Zelikovsky and Mandoiu [48] give the best approximation ratios – three and

nine for ZST and BST respectively. The algorithm is not as good as the best heuristics

in practice, but provides several inspirations for this work. Besides, an integer linear

programming (ILP) method is recently proposed for constructing optimal BST [56].

2.2 Multiple-Net Routing

We will first introduce the two major paradigms for resolving the resource competition

issue in routing multiple nets. Then, we will review the previous works on global routing

and detailed routing respectively. After that, the problem of bus routing will be intro-

duced. In the end, we will provide a background on the liquid cooling network for 3D IC,

where multiple tree-like cooling networks will help to cool down the 3D IC.

2.2.1 Sequential and Concurrent Routing

There are two major paradigms for routing multiple nets: sequential routing and concur-

rent routing [57].

In sequential routing, nets are routed one after another, where previously routed nets

are regarded as obstacles for later nets. A basic tool for routing a net is maze routing [58],

which finds a shortest path between two points on a regular grid graph with possibly some

obstacles. It is performed like a breath-first search. When the grid graph has weighted

routing edges or even irregular structures, a priority queue can help the efficient expansion

by the idea of Dijkstra’s algorithm. There are in general two approaches to route a net

with more than two pins by maze routing. The first is to decompose the net into multiple

two-pin nets by Steiner tree method and then perform maze routing for each two-pin net.

The second is to start from a source pin for searching other sink pins. Whenever a sink

pin is reached, the whole path from the source to this sink pin is also regarded as the

source. Moreover, after routing all the nets sequentially with possible violations, several

rounds of negotiation-based rip-up and reroute (RRR) help to clean them up [59].

10

Chapter 2. Literature Review

The sequential routing algorithms are commonly used mainly because of their simplic-

ity, scalability and flexbility. However, its quality heavily relies on the net order. To avoid

the issue, concurrent routing methods adopt the formulations such as multi-commodity

flow and integer linear programming (ILP), but they usually suffer from poor scalability.

2.2.2 Global Routing

During the past two decades, many approaches were proposed to complete fast and high-

quality global routing with a sustaining progress.

Most of the methods adopt the scheme of sequential routing. Labyrinth [60] proposes

the pattern routing, which can greatly accelerate the maze routing by constraining the

number of bends in the path. FGR [61] applies discrete Lagrange multipliers and extends

A* search to build up a high-performance global router. FastRoute [62–64] proposes

a congestion-driven Steiner tree topology generation technique and monotonic routing

to avoid invoking maze routing too frequently. Besides, a multi-source multi-sink maze

routing is proposed to overcome the limitations of decomposing the multi-pin net into

two-pin nets. Moreover, it adopts via-aware Steiner tree generation, 3-bend routing and

layer assignment with careful ordering to reduce via count. BoxRouter [65,66] uses ILP in

gradually expanded boxes for congested regions together with an adaptive maze routing.

It also applies robust negotiation-based A* search for routing stability, and topology-

aware RRR for flexibility. Ancher [67] proposes a history-based cost metric, a framework

smoothly trading off between overflow and wirelength, and a Lagrangian relaxation-based

bounded-length min-cost topology improvement algorithm. NTHU-route [68] explores the

history based cost function and ordering methods for the global routing. NCTU-GR [69])

proposes a bounded-length maze routing algorithm and a RSMT-aware routing scheme

together with a collision-aware multithreading to better balance the quality and runtime.

There are also some exploration on the concurrent routing method. Albrecht et al. [70]

formulates the global routing as a multi-commodity flow problem, which can be solved by

an approximation algorithm for fractional flow together with the randomized rounding.

GRIP [71] solves the ILP formulation for the entire global routing problem by the column

generation method. It overcomes the scalability issue of ILP by decomposing the chip

into rectangular subregions. BonnRoute [72] models the global routing by the min-max

resource sharing problem, a generalization of the multi-commodity flow problem, where

a path composition Steiner tree algorithm is used as an oracle function. RRR is also

performed to resolve the violations due to the randomized rounding. The scheme has also

been extended to take timing into account recently [73].

11

Chapter 2. Literature Review

2.2.3 Detailed Routing

The solution quality of detailed routing directly influences various eventual design metrics

such as timing, signal integrity, and chip yield [74]. Meanwhile, its solution space, a 3D

grid graph, is significantly larger than that of global routing. In advanced technology

nodes, detailed routing becomes the most complicated and time-consuming stage [75].

However, there is insufficient effort for exploring efficient and effective detailed routers

compared with global routing in academia. RegularRoute [74] encourages regular rout-

ing patterns and exploits a maximum independent set formulation for better design rule

satisfaction. MANA [76] considers end-of-line spacing and minimum length of a wire seg-

ment in maze routing. The work in [77] presents the data structures and algorithms for

detailed routing used in BonnRoute. Besides, several specific issues in detailed routing

have been discussed. For example, methods for the pin access optimization are proposed

in [78–80]. For others, the impact of various manufacturing technologies have been dealt

with, including triple patterning [81–83], self-aligned doubling patterning [84], and di-

rected self-assembly [85].

Recently, the ISPD 2018 Initial Detailed Routing Contest [75] stimulates several works

on detailed routing. Kahng et al. [86] propose TritonRoute, a detailed router with integer

linear programming (ILP) based intra-layer parallel routing. Sun et al. [87] present a

detailed routing algorithm with a multi-stage RRR scheme. Their approaches suffer from

the weakness in both design rule satisfaction and runtime scalability.

As the feature size scales down, not only the problem size but also the complexity

of design rules of detailed routing becomes increasingly challenging. Moreover, many

detailed routers heavily rely on post processing for fixing design rule violations. Design

rule dimensions, however, do not scale well with feature miniaturization (e.g., feature size

decreases much faster than minimum area values) and require relatively more spaces for

fixing. In this way, a post processing step fails more frequently [77]. Therefore, a detailed

routing framework that is scalable in runtime as well as memory usage and provides more

correct-by-construction design rule satisfaction is in need.

2.2.4 Bus Routing

The continuous development of modern VLSI technology has brought new challenges for

on-chip interconnections. In modern designs, there are buses with long wires that can

introduce long wire delay. To maintain signal integrity, some post-routing optimizations

such as buffer insertions are needed. However, if the bits in the same bus are routed in

different topologies, it is very difficult to find places to insert buffers for different bits of

the same bus in a regular manner. To resolve this problem, it is preferred to have the

same routing topology among all the bits of a bus, which is different from classic net-by-

net routing. In spite of reducing the size of the solution space of the routing problem to

12

Chapter 2. Literature Review

some extent, this topology constraint also makes it more difficult to efficiently allocate

appropriate routing resources to each bus on multiple metal layers. Meanwhile, similar

to classic net-by-net routing, solution qualities such as wirelength and via count are also

important metrics to optimize for bus routing. An effective bus router should provide a

solution with high routing quality while maintaining topology consistency in a bus for the

benefits of synchronizing signals.

The techniques of net-by-net routing can hardly be straightforwardly applied in bus

routing due to the difficulty of maintaining topology consistency. There are some previous

works handling issues related to escape routing on printed circuit board (PCB) designs,

e.g. pin assignment guaranteeing routability [88], layer assignment to minimize the num-

ber of used layers [89], and an ILP-based solution [90] to solve the entire bus planning

problem. However, for typical escape routing on PCB designs, having the same topology

among different bits of the same bus is not required although the bus bits are typically

routed together.

To observe the topology constraint, Streak [91] uses a representative bit to generate

a set of topology candidates and then applies an ILP to select a good one. All the other

bits in the bus try to follow the selected one. However, the selected topology may not

be achievable due to the lack of routing resources. To handle this issue, there is a post-

refinement stage in Streak where the original bus will be divided into several sub-buses

and different sub-buses will have different topologies. Therefore, the techniques in Streak

will not be suitable if the bus structure cannot be changed freely. Besides Streak, there

is very few previous work aiming at routing buses with topology constraint.

2.2.5 3D IC Liquid Cooling Network

With not only significant saving in delay, power and area but also possibility of yield

increase and heterogeneous integration, through-silicon-via (TSV) based 3D ICs are en-

visioned as one of the most promising solutions to continue the performance increase

of computer systems [92]. However, 3D integration increases both heat dissipation den-

sity and thermal resistance from junction to ambient, aggravating the existing thermal

problem.

To resolve the huge thermal challenge in chip design and especially in 3D ICs, microchannel-

based single-phase liquid cooling has been proposed with immense potential for high-

performance servers [93]. Single-phase fluid, such as water, is injected into micro-scale

channels (a.k.a. microchannels) etched between two consecutive vertical tiers to carry the

heat out from the 3D stack, as shown in Figure 2.2(a). It is much more effective than

both conventional air cooling and back-side liquid cold plate [94]. Moreover, with this

aggressive cooling mechanism, some high-performance technologies limited by thermal

constraints will become possible and leakage power consumption can also be reduced [95].

13

Chapter 2. Literature Review

Solid Layers

TSV Microchannel Substrate Source Layer

Channel Layer

Solid Layers

Channel Layer

Solid Layers

(a)

(b)

(c)

Figure 2.2: (a) 3D IC using microchannel-based liquid cooling. (b) Straight microchan-
nels. (c) Cooling network with bends and branches.

Not only is liquid cooling effective and beneficial, the fabrication of microchannels is

also compatible with current CMOS process. Prototypes of 3D ICs with microchannel-

based liquid cooling system have been built by various research groups showing promising

results [96–98].

However, liquid cooling brings new challenges including large thermal gradient [99] and

high pumping requirement [100]. In liquid-cooled chips, coolant absorbs heat along the

microchannels as it flows from inlets to outlets, making temperatures in downstream re-

gions tend to be much higher than those in upstream regions. The deduced large thermal

gradient may lead to reliability issues and timing errors. Also, due to the limited diam-

eter of the microchannels, the energy required to inject the coolant can be a significant

overhead to the whole system.

There have been many studies on the challenges of liquid-cooled 3D ICs. Qian

et al. [101] propose to divide straight microchannels into clusters and apply appropriate

flow rates separately to avoid pumping power waste. Shi et al. [102] combine microchan-

nel liquid cooling and thermal TSVs to improve power efficiency. Shi et al. [103] also

develop a heuristic to allocate straight microchannels, which is further co-optimized with

channel sizing and flow rates to minimize the cooling power consumption. The main dis-

advantage of these proposals is that they all primarily target the improvement of energy

efficiency and neglect the thermal gradient. Therefore, the thermal gradient can only be

improved by limited extent by chance. Apart from these design-time exploration, the

existing run-time thermal management approaches (e.g. [104]) also have this deficiency.

In [99], Sabry et al.. use channel width modulation to optimize the cooling energy under

thermal gradient and peak temperature constraints. However, the optimization is based

on an one dimensional model which ignores heat transfer between regions cooled by dif-

ferent channels and is thus inaccurate on the full-chip scale. In addition, they all consider

straight channels only and do not utilize the flexibility of CMOS process to design liquid

cooling networks, as Figures 2.2(b) and 2.2(c) show. In [105], Van Oevelen et al.. begin

to adopt the topological design in order to minimize heat transfer, but the assumption of

14

Chapter 2. Literature Review

constant temperature heat source is far from realistic chip design.

15

Part II

Single-Net Routing

16

Chapter 3

Trade-off Between Wirelength and

Path Length

In this chapter, we propose an efficient algorithm called SALT for constructing a Steiner

SLT and apply it to routing topology construction. Our contributions are summarized as

follows.

1. We propose SALT for the Steiner SLT on general graphs, whose shallowness-lightness

bound is (1+ ε, 2+dlog 2
ε
e). To the best of our knowledge, the bound is tighter than

all the previous methods for constructing general-graph spanning/Steiner SLTs (See

Table 3.1).

2. We simplify SALT and reduce the runtime from O(n2) to O(n log n), when applying

it to the Manhattan space for VLSI routing. We further decrease path lengths

and tree weight in the Manhattan space by integrating SALT with the classical

RSMA [30] and RSMT [25] algorithms. The method (rectilinear SALT) provides a

smooth trade-off between RSMA and RSMT controlled by ε1.

1It was found after the preliminary version [6] of this work was published that our rectilinear
SALT achieves the same bound as the approach in [41] in the Manhattan space. A minor
difference is that rectilinear SALT incorporates a classical RSMA method [31] directly, leading
to better Steiner trees in practice. Another small difference is that we break a tie (line 22 of
Algorithm 3.2) to reduce the wirelength.

Table 3.1: Historical Progress of Shallow-Light Trees

Algorithm
Shallowness-lightness

bound
Metric

ABP/BRBC [35,36] (1 + 2ε, 1 + 2
ε) General

KRY [37] (1 + ε, 1 + 2
ε) General

ES [39,40] (1 + 2ε, 4 + 2dlog 2
ε e) General

HR [41] (1 + ε, 2 + dlog 2
ε e) Manhattan

SALT (1 + ε, 2 + dlog 2
ε e) General

17

Chapter 3. Trade-off Between Wirelength and Path Length

3. We apply several effective safe refinement techniques to improve the wirelength and

path lengths of the tree output by rectilinear SALT.

4. As another post-processing step, we design an edge substitution algorithm to further

minimize the wirelength, where slight path length degradation is allowed but is

controlled under the shallowness constraint.

Note that we follow the definition in ES [40] for the general-metric Steiner tree. There

are, however, some limitations on the generality (e.g., cannot be embedded into a Eu-

clidean metric). The definition will be introduced in detail in Section 3.1.1.1.

As a geometric approach for VLSI routing, our method directly targets wirelength and

path lengths instead of a highly accurate timing model. However, this is desirable due to

three reasons. First, SALT provides a bounded trade-off and has a strong global view.

It can generate high-quality initial solutions for later stage optimization. Second, the

linear delay model is reasonable due to buffering [106, 107], wire sizing and layer assign-

ment [108], compared to the Elmore delay model. Third, in the experiment, SALT is also

comparable in terms of Elmore delay with the state-of-the-art Steiner tree construction

method targeting Elmore delay directly [73,109,110].

Last but not least, we want to highlight that even though the bound analysis of

SALT is complicated, it can be easily implemented with hundreds of lines of codes. The

source code of SALT implementation is also publicly available at https://github.

com/chengengjie/salt.

The remainder of this chapter is organized as follows. The Steiner SLT algorithm on

general graph (SALT) is presented in Section 3.1. Its adaption to the Manhattan space

(rectlinear SALT) is detailed in Section 3.2. The post-processing techniques for further

improving constructed trees are illustrated by Section 3.3 and Section 3.4. In the end,

Section 3.5 shows and analyzes the experimental results.

3.1 Steiner Shallow-light Tree Algorithm

The exact problem formulation and the ES algorithm [40] for the Steiner SLT are first

briefly introduced as preliminaries. The framework as well as the light Steiner SPT

construction of SALT is then described, followed by the bound analysis.

3.1.1 Preliminaries

3.1.1.1 Problem Formulation

Our Steiner SLT algorithm on general graphs is under the same problem formulation used

in [40]. A spanning/Steiner tree T of a weighted undirected n-vertex graph G = (V,E,w)

with respect to a root vertex r is called an SLT if (i) it approximates all shortest-path

18

https://github.com/chengengjie/salt
https://github.com/chengengjie/salt

Chapter 3. Trade-off Between Wirelength and Path Length

Table 3.2: Notations Used in ES

MST (G) Minimum spanning tree on graph G

dG(u, v) Distance between vertices u and v in graph G

Pi i-th vertex on path P

Algorithm 3.1 ES

Require: Graph G = (V,E,w), root r, trade-off parameter ε;
Ensure: Steiner SLT T = (V ′, E′, w′) with V ′ ⊇ V that dominates G;
1: TM ←MST (G);
2: P ← Hamiltonian path based on TM starting from r;
3: Breakpoint set B ← ∅;
4: Breakpoint b← r;
5: for v ← P1 to Pn do
6: if dP (b, v) > ε · dG(r, v) then
7: b← v;
8: B ← B ∪ {b};
9: end if

10: end for
11: TB ← Steiner SPT on G[B ∪ {r}] rooted at r;
12: T ← spanning SPT on graph TM ∪ TB;

distances dG(r, v) from r to v ∈ V , and (ii) its weight w(T) is bounded by that of MST

w(MST (G)). For a (ᾱ, β̄)-SLT, (i) the shallowness α = max{ dT (r,v)
dG(r,v)

|v ∈ V \{r}} ≤ ᾱ,

and (ii) lightness β = w(T)
w(MST (G))

≤ β̄. Note that on a graph that is metric (i.e., with

edge weights satisfying triangle inequality), a lightness bound with respect to MST infers

one with respect to SMT because w(MST (G)) ≤ 2 · w(SMT (G)) (i.e., w(T) ≤ β̄ ·
w(MST (G)) ≤ 2 · β̄ · w(SMT (G))). For rectilinear Steiner trees, the gap is smaller with

w(RMST (G)) ≤ 1.5 · w(RSMT (G)).

Considering the general metric scenario, a Steiner tree for a graph G = (V,E,w) is

defined as a tree T = (V ′, E ′, w′) with V ′ ⊇ V and w′ : E ′ → R+ that dominates the

metric MG induced by G, i.e., ∀u, v ∈ V, dT (u, v) ≥ dG(u, v).

Even though such Steiner SLT cannot be embedded into many metric spaces (e.g.,

Euclidean space2 or finite graph metrics), it is applicable to the Manhattan space, which

will be shown in Section 3.2. For simplicity of illustration, we henceforth assume all the

input graph G is complete and metric. Indeed, any weighted undirected graph G∗ defines

a metric space and thus implies a graph G that is complete and metric.

3.1.1.2 ES Algorithm

The ES algorithm extends the ABP algorithm for spanning SLTs to Steiner ones. The key

steps are shown in Algorithm 3.1 and Figure 3.1 with notations summarized in Table 3.2.

2In the Euclidean plane, a bound of (1 + ε, O(
√

1
ε)) is achievable and tight for Steiner SLTs

[111,112].

19

Chapter 3. Trade-off Between Wirelength and Path Length

(a) MST TM (b) Path P (c) Graph TM ∪ TB (d) ES T

Figure 3.1: Sample run of ES (ε = 1). (a) Construct MST TM (shallowness α = 3.14,
lightness β = 1). (b) Identify breakpoints B (circled by green) on the Hamiltonian
path P , where each blue arrow points from a non-breakpoint v to its previous vertex for
accumulating distance dP (b, v) . (c) Obtain the Steiner SPT TB on G[B ∪ {r}], and get
graph TM ∪TB. (d) Construct the spanning SPT on TM ∪TB, which is the desired Steiner
SLT T (α = 1.90, β = 1.06).

Its main idea is to accumulate the distance along a Hamiltonian path P and identify a

breakpoint b whenever the accumulated distance becomes too long. Breakpoints are then

connected to the root r directly by a Steiner SPT (line 11). In this way, the distance

dT (r, b) between a breakpoint b and r in the tree T becomes the shortest-path distance

dG(r, b). For other vertices, the path length is bounded.

The Steiner SPT for connecting breaking points is a dedicated design (refer to Section 2

of [40] for details). Applying it to a graph G′ leads to the lightness bound β̄ = 1+2dlog ne.
The algorithm starts by building a skeleton of a full balanced binary tree, of which the

leaves are the original vertices and the inner nodes are Steiner points. From bottom to

top, the edge weights are assigned carefully, to make sure the tree will be a SPT that

dominates G.

ES is not complicated, but surprisingly, it leads to an exponentially lighter SLT than

ABP. Besides, it is reasonably fast. The exact bounds are shown by Theorem 3.1.

Theorem 3.1. The ES algorithm generates a Steiner (1 + 2ε, 4 + 2dlog 2
ε
e)-SLT in O(n2)

time.

Proof. See Lemmas 3.4, 3.5 and 3.6 of [40].

3.1.2 Framework

SALT first identifies some breakpoints on an initial topology and then connect them to

the root by a Steiner SPT, which is similar to ES. Inspired by the KRY algorithm [37],

we propose to use (i) a tighter criterion for identifying breakpoints and (ii) a better initial

topology (i.e., an MST instead of a Hamiltonian path) in the Steiner SLT construction.

20

Chapter 3. Trade-off Between Wirelength and Path Length

Table 3.3: Additional Notations Used in SALT

p[v] Parent of vertex v

d[v] Current distance estimate from r to vertex v

(a) MST TM (b) Forest F (c) SALT T

Figure 3.2: Sample run of SALT (ε = 1). (a) Construct MST TM , where each blue arrow
points from a vertex v to its parent p[v]. (b) Update p[v] and identify breakpoints B
(circled by green) during the DFS on TM , which results to a forest F with tree roots
being B. (c) Obtain the Steiner SPT TB on G[B ∪ {r}], and T = F ∪ TB is the final
Steiner SLT (shallowness α = 1.43, lightness β = 1.05).

The framework with the two effective techniques is illustrated by Algorithm 3.2 and

Figure 3.2. As a subroutine, the light Steiner SPT construction method will be described

by Algorithm 3.3 in the next subsection.

In SALT, the solution is initialized to an MST and gradually modified towards a

Steiner SLT. The major routine is based on a depth-first search on the MST (function

DFS). During DFS, if the shallowness constraint is violated at a vertex, the vertex will

become a breakpoint (line 9). In the end, breakpoints will be connected to r via a SPT,

so its distance estimate d[v] is set to the shortest-path distance dG(r, v) for relaxing the

distance estimates of the other vertices (line 10). Two relaxations are conducted on each

edge, from parent to child and from child to parent (lines 13 and 15). After DFS, edges

(v, p[v]) for non-breakpoints v define a forest F , with tree roots being breakpoints. In the

end, breakpoints are connected to r by a Steiner SPT TB.

The relaxation (function Relax) from vertex u to v means updating distance estimate

d[v] if the path from r via u to v is shorter (line 19). Different from KRY, we also update

the parent p[v] of v even if d[v] can not be shortened but its edge to the parent can

becomes shorter (line 22). The latter situation actually frequently happens in Manhattan

space and benefits the tree weight.

The two techniques mentioned above are detailed here. First, breakpoints are identified

by checking distance estimate d[v] instead of the accumulated distance dP (b, v) on the

Hamiltonian cycle (in Algorithm 3.1 line 6). As a straight-forward modification, d[v] can

21

Chapter 3. Trade-off Between Wirelength and Path Length

Algorithm 3.2 SALT

Require: Graph G = (V,E,w), root r, trade-off parameter ε;
Ensure: Steiner SLT T = (V ′, E′, w′) with V ′ ⊇ V that dominates G;
1: Initialize (B ← ∅, d[r] = 0, ∀v ∈ V, d[v] = +∞, p[v] = null);
2: TM ←MST (G);
3: DFS(r, TM);
4: Forest F ← {(v, p[v])|v ∈ V \(B ∪ {r})};
5: TB ← Steiner SPT rooted at r for G[B ∪ {r}] by Algorithm 3.3;
6: T ← F ∪ TB;
7: function DFS(v, TM)
8: if d[v] > (1 + ε) · dG(r, v) then
9: B ← B ∪ {v};

10: d[v]← dG(r, v);
11: end if
12: for each child u of v in TM do
13: Relax(v, u);
14: DFS(u, TM);
15: Relax(u, v);
16: end for
17: end function
18: function Relax(u, v)
19: if d[v] > d[u] + w(uv) then
20: d[v]← d[u] + w(uv);
21: p[v]← u;
22: else if d[v] = d[u] + w(uv) and w(p[v]v) < w(uv) then
23: p[v]← u;
24: end if
25: end function

be the sum of the shortest-path length dG(r, b) (from r to the previous breakpoint b) and

the path length dP (b, v) (from b to v), which is an upper bound on dT (r, v) in the final T .

More specifically, we can change the condition dP (b, v) > ε·dG(r, v) to dG(r, b)+dP (b, v) >

(1+ ε) ·dG(r, v). Note that the value of d[v] in Algorithm 3.2 is computed correctly by the

relaxation steps before and after each recursive call (lines 13 and 15). Second, the initial

topology is an MST instead of a Hamiltonian path. In this way, the distance estimate

d[v] is according to the MST, which is tighter than d[v] = dG(r, b) + dP (b, v) based on

the Hamiltonian path and can trigger fewer breakpoints. Note that in extreme cases, the

second technique brings no benefit (e.g., MST is also a Hamiltonian path), but it does

help in most practical cases.

3.1.3 Light Steiner Shortest-Path Tree

A light Steiner SPT can be constructed by Algorithm 3.3, which has smaller tree weight

than that in the ES algorithm. Notations used are in Table 3.4 and Figure 3.3.

Same as the Steiner SPT in ES, our SPT is also a full balanced binary tree, with

leaves being the given vertices and inner nodes being Steiner vertices. Initially, the vertex

22

Chapter 3. Trade-off Between Wirelength and Path Length

Table 3.4: Additional Notations Used in Light Steiner SPT

T (z) Subtree rooted at vertex z

Leaves(z) Set of leaf vertices in Tz
t(z) Distance from root r to vertex z in the SPT

b(zl, zr) Disbalance between vertices zl and zr
s(zl, zr) Distance surplus between vertices zl and zr
c(zl, zr) Edge cost between vertices zl and zr
L Vertex sequence

Li i-th vertex of L

|L| Vertex number in |L|
vi i-th vertex along the traveling salesman circle

f(z) First index of Leaves(z) = {vf(z), vf(z)+1, ..., vl(z)}
l(z) Last index of Leaves(z) = {vf(z), vf(z)+1, ..., vl(z)}
W (i, j) Length of path (vi, vi+1, ..., vj):

∑j−1
k=i dG(vk, vk+1)

W ′i Total weight of edges added in the i-th iteration

𝒛

𝑧𝑙 = 𝐿𝑘
𝑧𝑟 = 𝐿𝑘+1

𝑣𝑙 𝑣𝑟

𝑑𝑇(𝑧𝑙 , 𝑣𝑙) 𝑑𝑇(𝑧𝑟 , 𝑣𝑟)

𝑤′(𝑧𝑧𝑙)
𝑤′(𝑧𝑧𝑟)

……
 𝐿𝑘 𝐿𝑘+1

𝐿

𝐿′

𝑟

……
𝒛

Figure 3.3: During Steiner SPT construction, neighboring vertices in L are merged pair
by pair into Steiner vertices in L′. To be more specific, vertices Lk (i.e., zl) and Lk+1 (i.e.,
zr) are merged to a Steiner vertex z in L′.

sequence L contains all the given vertices. In each iteration of the main loop (line 4–16),

neighboring vertices are merged (i.e., connected to a parent Steiner vertex) pair by pair

to form the vertex sequence L′ for the next iteration. Note that the vertex number is

reduced by half in each iteration and eventually becomes one.

When a Steiner vertex z is inserted as the parent for vertices zl and zr, the edge

weights are assigned under the consideration of disbalance b and distance surplus s:

b(zl, zr) = t(zl)− t(zr), (3.1)

s(zl, zr) = max{dG(vl, vr)− dT (zl, vl)− dT (zr, vr)

|vl ∈ Leaves(zl), vr ∈ Leaves(zr)},
(3.2)

where t(z) is the distance from root r to vertex z in the final SPT. It is obvious that

23

Chapter 3. Trade-off Between Wirelength and Path Length

Algorithm 3.3 Light Steiner SPT

Require: Graph G = (V,E,w), root r;
Ensure: Steiner SPT T = (V ′, E′, w′) with V ′ ⊇ V that dominates G;
1: Initialize (V ′ ← V,E′ ← ∅, ∀v ∈ V, t(v)← dG(r, v));
2: L← Hamiltonian circle based on MST (G) (Ln+1 = L1);
3: while |L| > 1 do
4: for k = 1 to n do
5: Calculate b(Lk, Lk+1), s(Lk, Lk+1) by (3.1) (3.2);
6: c(Lk, Lk+1)← max{s(Lk, Lk+1), |b(Lk, Lk+1)|};
7: end for
8: ML ← a light perfect (or near perfect) matching on the circle defined by L and c;
9: L′ ← empty vertex sequence;

10: for LkLk+1 ∈ML do
11: AddSteiner(Lk, Lk+1);
12: end for
13: if |L| is odd then
14: Append the unmatched vertex to L′;
15: end if
16: L← L′;
17: end while
18: function AddSteiner(zl, zr)
19: Add a Steiner vertex z into V ′;
20: Add edges zzl and zzr into E′;
21: if |b(zl, zr)| ≤ s(zl, zr) then

22: w′(zzl)← s(zl,zr)+b(zl,zr)
2 ;

23: w′(zzr)← s(zl,zr)−b(zl,zr)
2 ;

24: else
25: w′(zzl)← max{b(zl, zr), 0};
26: w′(zzr)← max{−b(zl, zr), 0};
27: end if
28: t(z)← dG(r, v)− dT (z, v) for an arbitrary v ∈ Leaves(z);
29: Append z to L′;
30: end function

t(z) = dG(r, z) if z is a leaf. t and b help maintain T to be a SPT and require the choice

of edge weights w′(zzl) and w′(zzr) to satisfy:

w′(zzl)− w′(zzr) = b(zl, zr). (3.3)

In this way, t(zl) = t(z) +w′(zzl) and t(zr) = t(z) +w′(zzr) can be true at the same time.

For distance surplus s, w′(zzl) and w′(zzr) should satisfy:

w′(zzl) + w′(zzr) ≥ s(zl, zr). (3.4)

This guarantees dG(vl, vr) ≤ dT (zl, vl) +w′(zzl) +w′(zzr) + dT (zr, vr) = dT (vl, vr) (i.e., T

dominates G). Algorithmic details are in function AddSteiner. Note that in line 28,

arbitrary v ∈ Leaves(z) can be picked to calculate t(z) due to the following lemma.

24

Chapter 3. Trade-off Between Wirelength and Path Length

Lemma 3.1. In Algorithm 3.3, for any vertex z in T and any vertex v ∈ Leaves(z),

dG(r, v)− dT (z, v) is a constant.

Proof. See Lemma 2.2 of [40].

Unlike the ES algorithm, which first determines the full-tree topology based on a

Hamiltonian path and then assigns weight to the edges, our algorithm calculates the edge

cost c(Lk, Lk+1) along L at each level and selects a good matching ML to add Steiner

vertices. According to the function AddSteiner, if a Steiner point z is inserted, the

sum c(zl, zr) of the weights of the two edges added will be

c(zl, zr) = w′(zzl) + w′(zzr) = max{|b(zl, zr)|, s(zl, zr)}. (3.5)

Since a cycle of even (resp. odd) number of edges can be decomposed into two perfect

(resp. near perfect) matching, the weight of the lighter one will be no more than half of

the cycle weight. In this way, the sum of the weights of the added edges is bounded.

Another technique that we use is to include the root r into the initial Hamiltonian

circle. In this way, an edge between the final Steiner point and r is avoided and saved.

The resulted tree T is a SPT, of which the proof is simple and is similar to that in [40].

3.1.4 Bound Analysis

We first analyze the lightness β of the Steiner SPT generated by Algorithm 3.3.

Lemma 3.2. In Algorithm 3.3, for any vertex z in T , there exist vi, vj ∈ Leaves(z), such

that dT (z, vi) + dT (z, vj) = dG(vi, vj).

Proof. The proof is by induction. If z is a leaf, it is trivial by making vi = vj = z. We

then assume that the statement holds for the two children zl and zr of z, and prove it for

z.

Suppose first that |b(zl, zr)| ≤ s(zl, zr), i.e., w′(zzl) + w′(zzr) = s(zl, zr). Let vi ∈
Leaves(zl) and vj ∈ Leaves(zr) be two vertices that achieve s(zl, zr) = dG(vi, vj) −
(dT (zl, vi) + dT (zr, vj)). Therefore,

dT (z, vi) + dT (z, vj)

= w′(zzl) + dT (zl, vi) + w′(zzr) + dT (zr, vj)

= s(zl, zr) + dT (zl, vi) + dT (zr, vj)

= dG(vi, vj).

(3.6)

Otherwise, |b(zl, zr)| > s(zl, zr). Suppose w.l.o.g. that w′(zzl) = 0. By the induction

hypothesis, there are vi, vj ∈ Leaves(zl) such that dT (zl, vi) + dT (zl, vj) = dG(vi, vj).

Hence,

dT (z, vi) + dT (z, vj) = dT (zl, vi) + dT (zl, vj) = dG(vi, vj). (3.7)

25

Chapter 3. Trade-off Between Wirelength and Path Length

𝐿𝑘
𝐿𝑘+1

𝑣𝑖 𝑣𝑗

− −

𝑐ሺ𝐿𝑘 , 𝐿𝑘+1ሻ = 𝑠ሺ𝐿𝑘, 𝐿𝑘+1ሻ

𝑣𝑙ሺ𝐿𝑘ሻ 𝑣𝑓ሺ𝐿𝑘+1ሻ
+ + +

(a) Balanced case

𝐿𝑘

𝐿𝑘+1

𝑣𝑞

− +

𝑐ሺ𝐿𝑘 , 𝐿𝑘+1ሻ = 𝑏ሺ𝐿𝑘, 𝐿𝑘+1ሻ

𝑣𝑙ሺ𝐿𝑘ሻ 𝑣𝑓ሺ𝐿𝑘+1ሻ
+ + +

𝑣𝑝

(b) Unbalanced case

Figure 3.4: Decomposed edge cost c(Lk, Lk+1).

Note that vi, vj ∈ Leaves(zl) ⊂ Leaves(z).

The next lemma is the key to our weight analysis, which shows that the weight of

the circle defined by L and c is bounded by the weight of the initial Hamiltonian cycle

W (1, n+ 1) =
∑n

k=1 dG(vk, vk+1).

Lemma 3.3. For the vertex sequence L in any iteration of Algorithm 3.3,
∑|L|−1

k=1 c(Lk, Lk+1) ≤
W (1, n+ 1).

Proof. We start by decomposing c(Lk, Lk+1). There are two cases, as Figure 3.4 shows.

First, suppose c(Lk, Lk+1) = s(Lk, Lk+1). Let vi ∈ Leaves(Lk) and vj ∈ Leaves(Lk+1) be

two vertices that achieve s(Lk, Lk+1). Therefore,

c(Lk, Lk+1) = s(Lk, Lk+1)

= dG(vi, vj)− (dT (Lk, vi) + dT (Lk+1, vj))

≤ dG(vi, vl(Lk))− dT (Lk, vi)︸ ︷︷ ︸
within T (Lk)

+ W (l(Lk), f(Lk+1))︸ ︷︷ ︸
between T (Lk), T (Lk+1)

+ dG(vf(Lk+1), vj)− dT (Lk+1, vj)︸ ︷︷ ︸
within T (Lk+1)

,

(3.8)

where the last inequality holds due to triangle inequality.

Second, c(Lk, Lk+1) = |b(Lk, Lk+1)|. If b(Lk, Lk+1) ≥ 0, by Lemma 3.1, ∀vp ∈

26

Chapter 3. Trade-off Between Wirelength and Path Length

Leaves(Lk),∀vq ∈ Leaves(Lk+1),

c(Lk, Lk+1) = b(Lk, Lk+1) = t(Lk)− t(Lk+1)

= (dG(r, vp)− dT (Lk, vp))− (dG(r, vq)− dT (Lk+1, vq))

≤ dG(vp, vq)− dT (Lk, vp) + dT (Lk+1, vq)

≤ dG(vp, vl(Lk))− dT (Lk, vp)︸ ︷︷ ︸
within T (Lk)

+ W (l(Lk), f(Lk+1))︸ ︷︷ ︸
between T (Lk), T (Lk+1)

+ dG(vf(Lk+1), vq) + dT (Lk+1, vq)︸ ︷︷ ︸
within T (Lk+1)

.

(3.9)

If b(Lk, Lk+1) < 0, the result is symmetric. Therefore, the part decomposed from c(Lk, Lk+1)

into T (Lk) is

Cr(Lk) =
dG(vi, vl(Lk))− dT (Lk, vi), c(Lk, Lk+1) = s(Lk, Lk+1),

dG(vp, vl(Lk))− dT (Lk, vp), c(Lk, Lk+1) = b(Lk, Lk+1),

dG(vq, vl(Lk)) + dT (Lk, vq), c(Lk, Lk+1) = −b(Lk, Lk+1),

(3.10)

where indices i is fixed while p, q are flexible. Meanwhile, there is Cl(Lk), which is decom-

posed from c(Lk−1, Lk) and can be calculated similarly. The weight sum within T (Lk) is

then C(Lk) = Cl(Lk) + Cr(Lk).

We will prove C(Lk) ≤ W (f(Lk), l(Lk)), which has three cases.

Case 1 : Cl(Lk) and Cr(Lk) both contain minus. Then C(Lk) = dG(vf(Lk), vj) −
dT (Lk, vj) + dG(vi, vl(Lk)) − dT (Lk, vi). When j ≤ i, it is obvious. Otherwise, since

dT (Lk, vj) + dT (Lk, vi) ≥ dT (vi, vj) ≥ dG(vi, vj),

C(Lk) ≤ dG(vf(Lk), vj) + dG(vi, vl(Lk))− dG(vi, vj)

≤ dG(vf(Lk), vi) + dG(vi, vj)) + dG(vi, vl(Lk))

≤ W (f(Lk), l(Lk)).

(3.11)

Case 2 : only one of Cl(Lk) and Cr(Lk) contains minus. Suppose w.l.o.g. that Cl(Lk)

does, then C(Lk) = dG(vf(Lk), vq) + dT (Lk, vq) + dG(vi, vl(Lk)) − dT (Lk, vi). By setting

q = i,

C(Lk) = dG(vf(Lk), vi) + dG(vi, vl(Lk)) ≤ W (f(Lk), l(Lk)). (3.12)

Case 3 : neither of Cl(Lk) and Cr(Lk) contains minus. That is, C(Lk) = dG(vf(Lk), vq)+

dT (Lk, vq) + dG(vp, vl(Lk)) + dT (Lk, vp). By Lemma 3.2, there exist f(Lk) ≤ q ≤ p ≤ l(Lk)

27

Chapter 3. Trade-off Between Wirelength and Path Length

such that

C(Lk) = dG(vf(Lk), vq) + dG(vq, vp) + dG(vp, vl(Lk))

≤ W (f(Lk), l(Lk)).
(3.13)

By (3.8), (3.9) and C(Lk) ≤ W (f(Lk), l(Lk)), the proof is done.

Lemma 3.4. In the i-th iteration of Algorithm 3.3, the total weight of added edges W ′
i ≤

w(MST (G)).

Proof. Due to the perfect (or near perfect) matching used and Lemma 3.3, W ′
i ≤ 1

2
·∑|L|−1

k=1 c(Lk, Lk+1) ≤ 1
2
· W (1, n + 1). Because of triangle inequality, W (1, n + 1) ≤

2 · w(MST (G)). By combining them, W ′
i ≤ w(MST (G)).

With the help of Lamma 3.4, the lightness bound of Algorithm 3.3 can be easily proved

to be β̄ = dlog ne. Note that the Steiner SPT in ES has β̄ = 1 + 2dlog ne, which is more

than twice of ours.

Theorem 3.2. The Steiner SPT T generated by Algorithm 3.3 has lightness bound β̄ =

dlog ne.

Proof. With dlog ne iterations, |L| can be reduced from n to 1. Therefore, w(T) =∑dlogne
i=1 W ′

i ≤ dlog ne · w(MST (G)).

We then analyze the bounds on shallowness α and lightness β of SALT. Two lemmas

are first needed.

Lemma 3.5. In Algorithm 3.3, if
∑

v∈V \{r} dG(r, v) ≤ θ · η (θ ≥ 1, η > 0), then w(T) ≤
dlog θe · w(MST (G)) + η.

Proof. First, n is assumed to be the power of 2. Indeed, we can duplicate r into 2dlogne−n
new vertices if it is not. Besides, if dlog θe ≥ log n, it is trivial by Theorem 3.2. Hence,

we assume that dlog θe < log n.

Let E ′i ⊆ E ′ denote the set of edges added during the i-th iteration (1 ≤ i ≤ log n),

W ′
i denote

∑
e∈E′

i
w′(e), Leaves(e) denote the set of leaf vertices in the downstream from

an edge e. Since T is SPT and |Leaves(e)| = 2i−1 for e ∈ E ′i,

∑
v∈V \{r}

dG(r, v) =
∑

v∈V \{r}

dT (r, v) =

logn∑
i=1

∑
e∈Ei

|Leaves(e)|w′(e)

=

logn∑
i=1

2i−1 ·W ′
i ≥

logn∑
i=dlog θe+1

2i−1 ·W ′
i ≥ θ

logn∑
i=dlog θe+1

W ′
i .

(3.14)

28

Chapter 3. Trade-off Between Wirelength and Path Length

Therefore,
∑logn

i=dlog θe+1W
′
i ≤ η since

∑
v∈V \{r} dG(r, v) ≤ θ · η. Together with Lemma 3.4,

w(T) =

logn∑
i=1

W ′
i =

dlog θe∑
i=1

W ′
i +

logn∑
i=dlog θe+1

W ′
i

≤ dlog θe · w(MST (G)) + η.

(3.15)

Lemma 3.6. In SALT,
∑

v∈B dG(r, v) ≤ 2
ε
· w(MST (G)).

Proof. See Lemma 3.2 of [37].

According to Lemma 3.6, KRY, which connects breakpoints to root r by edges directly,

leads to a spanning (1 + ε, 1 + 2
ε
)-SLT. Introducing Steiner points by Algorithm 3.3 makes

the bound tighter.

Theorem 3.3. SALT generates a Steiner (1 + ε, 2 + dlog 2
ε
e)-SLT.

Proof. Whenever d[v] of a vertex v exceeds (1 + ε) times its shortest-path length dG(r, v),

d[v] is set to dG(r, v) and fixed. Therefore, we have shallowness α ≤ 1 + ε.

Since TB is a Steiner SPT on graphG[B∪{r}], substituting θ = 2
ε

and η = w(MST (G))

(by Lemma 3.6) into Lemma 3.5 makes w(TB) ≤ (1 + dlog 2
ε
e) · w(MST (G)). Besides,

w(F) ≤ w(MST (G)) because F ⊂ MST (G). Hence, w(T) = w(TB) + w(MST (G)) ≤
(2 + dlog 2

ε
e) · w(MST (G)).

3.2 Rectilinear Steiner Shallow-light Tree Algorithm

SALT, which generates a Steiner (1 + ε, 2 + dlog 2
ε
e)-SLT for a general graph, can be

directly applied in the Manhattan space. However, it can be enhanced with the help of

some special properties as well as classical algorithms. The resulted algorithm, rectilinear

SALT, is shown by Algorithm 3.4 and Figure 3.5. W.l.o.g., we assume that the root r is

at the origin of the space.

First of all, to build a rectilinear Steiner SPT, adding a Steiner point to merge two

vertices (function AddSteiner in Algorithm 3.3) becomes easier on Manhattan plane.

In the following discussion, we focus on the two-dimensional situation, but it can be

extended to higher dimensions. For two vertices zl = (xzl , yzl) and zr = (xzr , yzr), the x

coordinate of their parent Steiner point z is

xz =

min{xzl , xzr}, xzl , xzr ≥ 0,

max{xzl , xzr}, xzl , xzr ≤ 0,

0, xzl · xzr < 0.

(3.16)

29

Chapter 3. Trade-off Between Wirelength and Path Length

Algorithm 3.4 Rectilinear SALT

Require: Points V on Manhattan plane, root r;
Ensure: Rectilinear Steiner SLT T = (V ′, E′) with V ′ ⊇ V ;
1: Initialize (B ← ∅, d[r] = 0, ∀v ∈ V, d[v] = +∞, p[v] = null);
2: TM ← RSMT on V by FLUTE ;
3: DFS(r, TM);
4: Forest F ← {(v, p[v])|v ∈ V \(B ∪ {r})};
5: TB ← RSMA rooted at r on B ∪ {r} by CL ;
6: T ← F ∪ TB;
7: function DFS(v, TM)
8: if v ∈ V and d[v] > (1 + ε) · dG(r, v) then
9: B ← B ∪ {v};

10: d[v]← dG(r, v);
11: end if
12: for each child u of v in TM do
13: Relax(v, u);
14: DFS(u, TM);
15: Relax(u, v);
16: end for
17: end function

(a) RSMT TM by
FLUTE

(b) Forest F (c) Rectilinear
SALT T

(d) RSMA by CL

Figure 3.5: Sample run of rectilinear SALT (ε = 1). (a) Construct RSMT TM by FLUTE
(shallowness α = 2.66, lightness β = 0.91). (b) Get breakpoints B (circled by green) and
forest F . (c) Obtain the RSMA TB on G[B∪{r}] by CL, and T = F ∪TB is the rectilinear
Steiner SLT (α = 1.22, β = 1.01). (d) RSMA by CL on the net (α = 1, β = 1.11).

yz is computed similarly. This location assignment of z is determined by distances w′(zzl),

w′(zzr) and t(z). Note that the case |b(zl, zr)| > s(zl, zr) (Algorithm 3.3 lines 24–26)

never happens now. Intuitively, such Steiner point z maximizes the overlapping of the

two shortest paths from r to vertices zl and zr. In this way, the coordinate of z can be

directly obtained from locations of zl and zr, which avoids the checking of all leaves of zl

and zr in (3.2). Therefore, the time complexity is now bounded by obtaining the MST

and is improved to O(n log n).

Second, the Steiner SPT problem in Manhattan space is exactly the classical RSMA

30

Chapter 3. Trade-off Between Wirelength and Path Length

problem [27,30]. The CL heuristics [31] is an approximation algorithm produces a tree of

weight at most twice the optimal. In practice, it is mostly optimal or near optimal, and is

very efficient with a time complexity of O(n log n). On the other hand, our light Steiner

SPT algorithm with lightness β ≤ dlog 2
ε
e may be far away from the optimal SPT in worst

cases. For example, when all vertices locate on a straight line, the optimal SPT is a path

and also the MST (i.e., β = 1). Hence, we use CL to construct the Steiner SPT to further

reduce the tree weight in practice (Algorithm 3.4 line 5). Note that this modification

maintain the proved complexity for both the quality (shallowness α and lightness β) and

time of Algorithm 3.2. While the constant in the shallowness bound (ᾱ = 1 + ε) is also

maintained, the constant in the lightness bound (β̄ = 2+dlog 2
ε
e) may be slightly worsened

in some corner cases but is better or much better in most cases.

Third, instead of starting from an MST in Algorithm 3.2, an initial tree with lighter

weight is achievable by allowing Steiner points. In Manhattan space, RSMT is a well-

investigated problem, and FLUTE [25] is adopted in our implementation (Algorithm 3.4

line 2). In this way, the bound on the tree weight w(T) actually becomes tighter. There

is still w(T) ≤ (2 + dlog 2
ε
e) ·w(TM), where TM is MST in Theorem 3.3 but now becomes

RSMT. Note that different from Algorithm 3.2, the Steiner vertices in the RSMT do not

need to be checked during the DFS (Algorithm 3.4 line 8).

By the above modifications, we reduce the lightness β of the Steiner SLT constructed

and improve the time complexity to O(n log n). From another viewpoint, rectilinear

SALT is a smooth trade-off between RSMA and RSMT. The smaller the ε, the closer the

rectilinear SALT is to a RSMA; the larger the ε, the closer it is to a RSMT. It is almost

a CL RSMA when ε = 0 and an FLUTE RSMT when ε = +∞. In the middle, it is a

bounded trade-off between them. To a certain extent, Figure 3.5 illustrates the situation.

The RSMT in Figure 3.5(a) is the lightest but has some long paths, while the RSMA in

Figure 3.5(d) is the shallowest but is of a large tree weight. Combining the strengths of

the both, the rectilinear SALT in Figure 3.5(c) is not only light but also shallow.

3.3 Safe Refinement

Three effective safe refinement techniques are adopted to further improve rectilinear

SALT, including intersected edge canceling, L-shape edge flipping, and U-shape edge

shifting. They are safe as they improve wirelength or path length or both without wors-

ening any of them. For simplicity, rectilinear SALT will be referred as SALT hereafter.

3.3.1 Intersected Edge Canceling

In SALT, edges in RSMA TB may intersect with edges in forest F , since TB and F are

constructed separately. Here, the intersection between two edges in the Manhattan space

31

Chapter 3. Trade-off Between Wirelength and Path Length

𝑣1

𝑣4

𝑣3

𝑣2
(a) Intersection box

(filled by grey)

𝑣1

𝑣2

𝑣4

𝑣3𝑣3
′

𝑣4
′

(b) Child corners v′3, v
′
4

𝑣1

𝑣2

𝑣4

𝑣3

𝑣4
′

𝑣3
′

𝑧
𝑧′

(c) z should be on edge
v′3v
′
4

𝑣1

𝑣2

𝑣4

𝑣3𝑣3
′

𝑧

𝑣4
′

(d) z should be either
v′3 or v′4

𝑣1

𝑣2

𝑣4

𝑣3𝑣3
′

𝑣4
′

(e) First solution

𝑣1

𝑣2

𝑣4

𝑣3𝑣3
′

𝑣4
′

(f) Second solution

Figure 3.6: Intersected edge canceling (arrows point to parents).

means that their bounding boxes intersect, which is illustrated by Figure 3.6(a). For

intersected edges v3v1 and v4v2, we can add a Steiner vertex z within the intersection box,

connect child vertices v3 and v4 to it, and then connect it to either v1 or v2. By choosing

the shorter path between (z, v1, ..., r) and (z, v2, ..., r), both path lengths and wirelength

can be reduced. The question is where the best location for the Steiner vertex z is, and it

can be answered by Theorem 3.4. Among the four corners of an intersection box, a child

corner is the closest to a child vertex (e.g., v′3 and v′4 in Figure 3.6(b)).

Theorem 3.4. For intersected edges, the optimal Steiner vertex z is a child corner of the

intersection box.

Proof. First, z should be on a child edge (i.e., the edge between the two child corners). If

not, its projected point z′ on the child edge can improve the wirelength without impacting

path lengths (Figure 3.6(c)). Supposing z is connected to v1, there is w(v3z) + w(v4z) +

w(zv1) = (w(v3z
′)+w(z′z))+(w(v4z

′)+w(z′z))+(w(z′v1)−w(z′z)) ≥ w(v3z
′)+w(v4z

′)+

w(z′v1).

When z is on the child edge but not a child corner, it can be improved by moving to

a child corner (Figure 3.6(d)). Assume z is still connected to v1. For wirelength, there

is w(v3z) + w(v4z) + w(zv1) ≥ w(v3v
′
4) + w(v4v

′
4) + w(v′4v1); for path lengths, there is

w(v4z) + w(zv1) ≥ w(v4v
′
4) + w(v′4v1), while w(v3z) + w(zv1) = w(v3v

′
4) + w(v′4v1).

The argument is similar if z is connected to v2. In short, the optimal solution is a child

corner (either v′3 or v′4) shown by Figures 3.6(e) and 3.6(f). Note that, in some cases, the

32

Chapter 3. Trade-off Between Wirelength and Path Length

Algorithm 3.5 Intersected Edge Canceling

Require: Tree T ;
Ensure: Tree T ′ without intersected edges;
1: Queue Q← bounding boxes of all edges in T ;
2: R-tree R← ∅;
3: while Q is not empty do
4: Box r ← dequeue Q;
5: Search for a box r′ in R that intersects with r;
6: if there is such r′ then
7: Delete r′ from R;
8: Cancel the intersection between r and r′;
9: Enqueue newly-generated edges to Q;

10: else
11: Insert r to R;
12: end if
13: end while

(a) Input (b) Output

Figure 3.7: L-shape edge flipping.

two child corners may merge into one, or the intersection box may even degenerates to a

segment, but our discussion is generic.

For a Steiner tree, we propose an iterative scheme for identifying and canceling all

the intersected edges (Algorithm 3.5) based on R-tree [113]. Throughout the process,

the major invariant is that the boxes in R-tree R do not intersect with each other. By

iteratively examining boxes (lines 3–13), a new box r will be broken or shrank (due to

the intersection canceling in Figure 3.6) until all the intersections caused by it has been

resolved. Regarding the running time of Algorithm 3.5, it is O(n log n) thanks to the

O(log n)-time query of R-tree and the O(n) edges in total.

3.3.2 L-/Z-Shape Edge Flipping

Edges may be overlapped with each other by flipping (in L or Z shape) and thus improves

wirelength and path lengths, as Figs. 3.7 and 3.8 show. Ho et al. [19] propose a dynamic

programming for edge flipping. The method is linear-time if the vertex degree is bounded,

and generates optimal wirelength if only edge overlapping around a vertex is counted. We

apply this techique. In SALT, the maximum vertex degree is the sum of that in FLUTE

(four, according [14]) and CL (four, considering the root), as a SALT T is the union

33

Chapter 3. Trade-off Between Wirelength and Path Length

(a) (b) (c) (d)

Figure 3.8: Z-shape edge flipping by iterative L-shape flipping. (a) Input. (b) First
L-shape flipping. (c) Second L-shape flipping (i.e., a Z-shape flipping). (d) Removing
redundant Steiner vertex.

𝑣2 𝑣3

𝑣4
𝑣1

(a) Input

𝑣1

𝑣2 𝑣3

𝑣4
𝑣2
′ 𝑣3

′

(b) Output

Figure 3.9: (Canonical) U-shape edge shifting.

𝑣2

𝑣3

𝑣4
𝑣1

(a)

𝑣3

𝑣4
𝑣1

𝑣2
′

𝑣2
(b)

𝑣3

𝑣4
𝑣1 𝑣2

′′

𝑣2

𝑣2
′

(c)

𝑣3

𝑣4
𝑣1 𝑣2

′′

𝑣2
(d)

Figure 3.10: General U-shape edge shifting. (a) Input. (b) L-/Z-shape edge flipping. (c)
Canonical U-shape edge shifting. (d) Removing redundant Steiner vertex.

of a FLUTE forest F and a CL RSMA TB. Therefore, the vertex degree is bounded

(≤ 4 + 4 = 8) and guarantees the O(n) time. In our implementation, the optimal L-shape

flipping is adopted, since the constant in the time complexity of the optimal Z-shape

flipping is quite large. The Z-shape flipping can be achieved by iterative L-shape flipping,

which is demonstrated by Figure 3.8.

3.3.3 U-Shape Edge Shifting

The U-shape edge shifting is proposed by Boese et al. [114]. It is beneficial not only to

wirelength and path lengths but also to Elmore delay. An example is in Figure 3.9, where

the edge v2v3 is shifted to v′2v
′
3. The U-shape shifting can be performed during a tree

traversal. It takes O(n) time due to the bounded vertex degree in SALT.

34

Chapter 3. Trade-off Between Wirelength and Path Length

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

(a)

𝑣1

𝑣2

𝑣3

𝑣4

𝑣5

(b)

𝑣1

𝑣3

𝑣4
𝑣6

𝑣2

𝑣5

(c)

𝑣1

𝑣2

𝑣3

𝑣4
𝑣6

𝑣5

(d)

Figure 3.11: L-/Z-shape edge flipping may make the edge intersection shrank or even
disappeared. (a) A case where edge v1v2 intersects with edge v3v4. (b) Another case
where edge v1v2 intersects with edge v3v4. (c) After L-shape edge flipping on (a), the
edge intersection shrinks. (d) After L-shape edge flipping on (b), the edge intersection
disappears.

3.3.4 Order of Safe Refinement Techniques

In our implementation, the three safe refinement techniques are performed in the following

order: (i) intersected edge canceling (IEC), (ii) L-/Z-shape edge flipping (LEF), and (iii)

U-shape edge shifting (UES). It is based on two considerations.

First, among the three safe refinement methods, IEC changes topologies more glob-

ally and significantly, while the other two methods work on topologically neighbored

edges only. Meanwhile, the other two methods may influence the solution space of IEC.

For example in Figure 3.11, after LEF, the previous edge intersection may shrink (Fig-

ure 3.11(b)) or disappear (Figure 3.11(d)), which means less or even missed improvement.

Second, a general UES can be decomposed into LEF and a canonical UES (Fig-

ure 3.10). In a canonical U-shape path, the middle edge (e.g., edge v2v3 of path v1v2v3v4

in Figure 3.9) is strictly horizontal or vertical. Therefore, conducting LEF first avoids

handling the many corner cases and thus eases the implementation of general UES.

3.4 Shallowness-Constrained Edge Substitution

Compared with safe refinement, shallowness-constrained edge substitution (SCES) is more

aggressive in wirelength minimization. It allows slight path length degradation but make

it under control by constraining the shallowness.

Edge substitution is an effective technique for constructing RSMT [22, 23], where a

target vertex (e.g., vi in Figure 3.12) is considered for connecting to a nearby candidate edge

(vjv
′
j in Figure 3.12). The idea can be brought to shallow-light trees, but the consideration

in shallowness besides lightness poses a great limit on the solution space. To minimize

wirelength in RSMT construction, it simply requires removing the longest edge along the

circle formed by the new edge. But this could incur huge influence on the path lengths.

Because not only the path lengths of many vertices can be degraded (if a vertex has

longer path to the root, all its descendants suffer), but also the directions of edges may

35

Chapter 3. Trade-off Between Wirelength and Path Length

𝑣𝑖

𝑣𝑗

𝑣𝑗
′

𝑣𝑖
′

(a)

𝑣𝑖
′′

𝑣𝑖

𝑣𝑗

𝑣𝑗
′

𝑣𝑖
′

(b)

𝑣𝑖
′′

𝑣𝑖

𝑣𝑗

𝑣𝑗
′

𝑣𝑖
′

(c)

Figure 3.12: Shallowness-constrained edge substitution (SCES). (a) Before SCES, vi is
the target vertex with v′i being its parent, while vjv

′
j is the candidate edge. (b) v′′i is the

closest point to vi within the bounding box of edge vjv
′
j. (c) After SCES, edge viv

′
i is

substituted by edges viv
′′
i , vjv

′′
i , and v′′i v

′
j.

Algorithm 3.6 Shallowness-Constrained Edge Substitution

Require: Tree T (V,E);
Ensure: Refined tree T ′;
1: Compute slack(T (v)) for v ∈ V (by two tree traversals);
2: Query candidate edges for V (by nearest neighbors or R-tree);
3: for vi ∈ V do
4: Best edge index k ← null
5: Best wirelength change ∆WL∗ ← 0
6: for each candidate edge vjv

′
j of vi do

7: Continue if vj ∈ T (vi);
8: v′′i ← closest point to vi in the bounding box of vjv

′
j ;

9: Wirelength change ∆WL← dG(vi, v
′′
i)− dG(vi, v

′
i);

10: Path length change ∆PL← dT (r, v′j) + dG(v′j , vi)− dT (r, v′j);
11: if ∆WL < ∆WL∗ and ∆PL < slack(T (vi)) then
12: ∆WL∗ ← ∆WL;
13: k ← j;
14: end if
15: end for
16: if ∆WL∗ < 0 then
17: Disconnect viv

′
i, connect viv

′′
i , vkv

′′
i and v′′i v

′
k;

18: Update slack(T (u)) for vertex u in T (vi) and path to r;
19: end if
20: end for

be reversed. SCES is thus proposed. Here, for a tree resulted by running SALT with ε,

its shallowness α after SCES will be still under 1 + ε.

In SCES, the substituted edge is restricted to be the parent edge of the target vertex

only (e.g., edge viv
′
i in Figures 3.12(b) and 3.12(c)) due to two reasons. First, reversing

edges tends to cause detour and thus shallowness violation. Second, for each of the O(n)

possible substituted edges along the circle, O(n) vertices may have path lengths affected,

leading to high computation cost for a single pair of target vertex and candidate edge.

Algorithm 3.6 shows the details of the proposed SCES. In order to efficiently check

whether an edge substitution violates shallowness constraint, path length dT (r, v) for each

vertex v is pre-computed by a pre-order traversal. Slack slack(v) of each vertex v and

slack(T (v)) of the subtree T (v) rooted at v are then computed by a post-order traversal

36

Chapter 3. Trade-off Between Wirelength and Path Length

𝑣𝑖

(a)

𝑣𝑖

𝑣𝑖′

(b)

Figure 3.13: Two ways to find the candidate edges for SCES: (a) nearest neighbor in each
octant (marked by green), and (b) R-tree query by an Manhattan circle.

followed (line 1):

slack(v) = (1 + ε) · dG(r, v)− dT (r, v) (3.17)

slack(T (v)) = min
u∈T (v)

slack(u). (3.18)

In this way, for a target vertex vi, if a candidate substitution increases its path length by

∆PL, its legality means ∆PL < slack(T (vi)) (line 11). Among all the candidate edges

of a vertex vi, the one that legally saves most wirelength will be connected to vi by a

Steiner point (v′′i in Figure 3.12(c)). Note that a legal candidate edge vjv
′
j cannot be

in T (vi) (line 7), which will otherwise make the tree disconnected. For a good order of

visiting vertices (line 3), Algorithm 3.6 can be run twice in different modes. The first

run calculates the wirelength improvement under the input topology T , while the second

processes the edge substitutions in the order of descending improvement and commits

those that are still legal.

Now the only problem left is how to efficiently identify candidate edges (line 2). The

first way is to exploit the geometrical proximity information embedded in the spanning

graph [18], similar to what Zhou [23] does for RSMT. That is, consider the edges connected

to the nearest neighbor vertex of the target vertex in each octant (Figure 3.13(a)). There-

fore, candidate edges are in a total number of O(n) and can be obtained in O(n log n)

time [23].

The second way adopts an R-tree [113], which stores the bounding boxes of all the

edges. For a target vertex vi with parent v′i, we query candidate edges by the Manhattan

circle centered at vi and with a radius of dG(vi, v
′
i) (Figure 3.13(b)). Here, an edge outside

the Manhattan circle is unable to save wirelength. Compared with using nearest neigh-

bors, querying by R-tree has two strengths. First, it never misses any candidate that can

reduce wirelength. Meanwhile, a “good” candidate edge may be blocked by other vertices

37

Chapter 3. Trade-off Between Wirelength and Path Length

(a)

v2

v3

v1

v5
v4

(b)

(c) (d)

Figure 3.14: Insufficiency of SCES based on nearest neighbors. Assume that a small ε
(e.g., 0.05) is used. (a) The input tree. (b) The only SCES that can be achieved by
considering nearest neighbors. (c) The SCES achieved by using R-tree. (d) The final
result of iterative SCES.

in the spanning graph. For example, for the tree in Figure 3.14(b), SCES that connects

target vertex v1 to candidate edge v4v5 can lead to an improved tree (Figure 3.14(c)).

Note that connecting v1 to edge v3v4 also reduces wirelength, but it causes detour and

may violate the shallowness constraint for the path from v1 to the root. Here, the method

of nearest neighbors cannot identify edge v4v5 as a candidate for v1 because v4 is blocked

by v3 in the spanning graph. With the help of R-tree query, the candidate edge v4v5,

however, can be easily obtained. Second, R-tree usually results fewer candidate edges

and saves runtime, especially for vertex with shorter parent edge (recall Figure 3.13).

Therefore, R-tree-based SCES is used in our default flow. Besides, it can be iterated to

accumulate wirelength improvement (Figure 3.14(d)).

Besides [22,23], SCES also recalls the detour-aware Steinerization (DAS) in PD-II [3].

DAS also restricts the substituted edge to the parent edge of the target vertex. However,

SCES and DAS have two-fold differences. First, DAS uses nearest neighbors to identify

candidate edges. Even though the nearest neighbor graph in DAS is not exactly the

spanning graph, it also suffers from the two aforementioned problems. Second, it only

constrains the path length degradation on the target vertex vi, without considering its

impact to the downstream vertices (i.e., dT (r, vi) ≤ 0.5 · maxu∈V dT (r, u) instead of our

∆PL ≤ slack(T (vi))). That is, the path length of a vertex may be degraded several times

due to its ancestors without constraint on such accumulation.

SCES is performed after safe refinement due to two reasons. First, safe refinement

mostly reduces path length and never degrades path length, which slackens the shallow-

ness constraint for SCES. Second, SCES by R-tree is a generalization of intersected edge

canceling and L-/Z-shape edge substitution. It explores a larger solution space but also

requires more runtime. Conducting safe refinement first will trigger SCES fewer times

38

Chapter 3. Trade-off Between Wirelength and Path Length

Table 3.5: ICCAD 2015 Benchmark Statistics

Design
cells
(×103)

nets classified by pin number (×103)
2 3 4-7 8–15 16–31 ≥ 32 ≥ 4

superblue1 1932 893 146 121 30 19 5.6 176
superblue3 1876 952 113 87 38 28 6.0 160
superblue4 796 610 88 63 20 18 3.3 104
superblue5 982 824 119 115 20 15 4.5 154
superblue7 768 1493 184 134 59 53 10.4 257
superblue10 1087 1457 238 129 40 26 9.0 204
superblue16 1213 756 99 103 23 13 4.5 144
superblue18 1210 575 101 47 22 22 4.8 96

Total 9863 7559 1087 800 253 194 48 1295

and save the total runtime.

3.5 Experimental Results

We implement SALT as well as ES [40], CL [31], ABP/BRBC [35,36], KRY [37], PD [38],

and Bonn [110] algorithms in C++, while the source code of FLUTE [25] is obtained from

the authors. For a low-degree net, the idea of FLUTE has been extended to generate all

the RSMTs instead of just one [115]. Among all the RMSTs, the shallowest one can be

selected to serve as a better reference. We obtain the look-up table files from the authors.

Moreover, the results of PD-II [3]3 are provided by the authors.

Benchmarks of ICCAD 2015 Contest [116] are used for a comprehensive evaluation

and comparison. The benchmark statistics are shown in Table 3.5. By ignoring 2-pin

and 3-pin nets, which are trivial, the batch test covers around 1.3 million nets in total.

Experiments are performed on a 64-bit Linux workstation with Intel Xeon 3.4 GHz CPU

and 32 GB memory. A single thread is used for simplicity, in spite that different nets can

be routed with SALT in parallel.

In the batch test, ε is set to 20 values ranging from 0 to 73.895 (mainly a geometric

sequence 0.05 × 1.5i) to cover the variation of different methods. The lightness metric

is changed to β′ = w(T)
w(FLUTE)

(instead of β = w(T)
w(MST)

), where FLUTE serves as a tighter

baseline than MST. Besides, a normalized Elmore delay metric γ, which assumes uniform

unit-length capacitance and resistance, is also used. For each routing tree, delay γ is the

longest Elmore delay among all source-sink paths, which is then normalized by a delay

lower bound using the method in [110]. For each method and each ε, we average the

scores over all the nets.

3Here PD-II denotes the complete flow in [3]. It is the PD construction followed by the
spanning tree refinement, Steinerization, the Steiner tree refinement, and a meta-heuristic. The
meta-heuristic runs FLUTE in parallel. If FLUTE is better in both wirelength and path lengths,
it is output. In the original paper, PD-II stands for PD with spanning tree refinement.

39

Chapter 3. Trade-off Between Wirelength and Path Length

3.5.1 Effectivenss of Post Processing

Table 3.6 and Figure 3.15 show the effectiveness of our post-processing techniques, safe re-

finement (SR) and shallowness-constrained edge substitution (SCES). The contributions

of the three SR techniques, intersected edge canceling (IEC), L-/Z-shape edge flipping

(LEF), and U-shape edge shifting (UES), are all shown. Performance of both implemen-

tation of SCES, by nearest neighbor (NN) and by R-tree, is also presented.

As Table 3.6 shows, SR simultaneously improves α, β′ and γ for every ε. Meanwhile,

for a given tree, SCES gives large improvement on lightness by possibly slightly sacrificing

shallowness (and delay). For example, when ε = 0.05, “SR + SCES by R-tree” reduces

the lightness of SR by 4.8% (from 1.0897 to 1.0376), with shallowness only increased by

0.14% (from 1.0062 to 1.0076). In general, it is obvious from Figure 3.15 that the Pareto

frontiers are pushed towards the origin by both SR and SCES. Regarding the two kinds

of implementation of SCES, R-tree achieves larger wirelength savings than NN due to its

more comprehensive scope.

For nets with various pin numbers, the shallowness and lightness gaps between RSMA

and RSMT are enlarged as net scales increase (see Figures 3.15(a) to 3.15(d)). SALT

with “SR + SCES by R-tree”, however, can always deliver a smooth trade-off between

RSMA and RSMT. For low-degree nets, the shallowest RSMT achieves much better α

than FLUTE by enumerating all RSMTs (Figure 3.15(a)). However, after post processing,

SALT obtains almost the same α even when β′ is the minimum. Note that this is achieved

without the time-consuming enumeration.

Figures 3.15(e) and 3.15(f) summarize the shallowness-lightness and delay-lightness

trade-off for all nets. Note that as lightness β increases, delay γ first decreases and then

slightly goes up. The reason is that larger β causes higher load capacitance for the driving

cell and thus more cell delay.

SALT is also very efficient. The runtime breakdown is shown in Figure 3.16. An

O(n log n) runtime growth (w.r.t. net scales) can be observed. Moreover, for the 1.3

million nets in the ICCAD 2015 benchmark, SALT with post processing spends 0.0654

ms for each net on average. That is, it finishes routing all the eight benchmarks in 1.42

minutes with a single thread under an ε.

3.5.2 Superiority over Other Methods

First of all, to give the readers some understanding of other routing tree construction

methods, sample runs on the example net are shown in Figure 3.17. Trade-off parameter

ε is set to 1. Recall that it implies a shallowness-lightness bound of (1 + 2ε, 1 + 2
ε
) for

ABP and (1 + ε, 1 + 2
ε
) for KRY. In PD, it means shallowness α ≤ 1 + ε. In Bonn, which

targets the Elmore delay, the total tree capacitance is at most 1 + 2
ε

times the minimum

(i.e., lightness bound β̄ = 1 + 2
ε

if pin capacitances are ignorable), while wire delay is at

40

Chapter 3. Trade-off Between Wirelength and Path Length

T
ab

le
3.

6:
E

ff
ec

ti
ve

n
es

s
of

P
os

t
P

ro
ce

ss
in

g

T
ra

d
e-

off
p
ar

am
et

er
ε

N
o

re
fi
n
em

en
t

S
R

(I
E

C
on

ly
)

S
R

(I
E

C
+

L
E

F
on

ly
)

S
R

(a
ll
)

S
R

+
S
C

E
S

b
y

N
N

s
S
R

+
S
C

E
S

b
y

R
-t

re
e

L
ig

h
t

-n
es

s
β
′S

h
al

lo
w

-n
es

s
α

D
el

ay
γ

L
ig

h
t

-n
es

s
β
′S

h
al

lo
w

-n
es

s
α

D
el

ay
γ

L
ig

h
t

-n
es

s
β
′S

h
al

lo
w

-n
es

s
α

D
el

ay
γ

L
ig

h
t

-n
es

s
β
′S

h
al

lo
w

-n
es

s
α

D
el

ay
γ

L
ig

h
t

-n
es

s
β
′S

h
al

lo
w

-n
es

s
α

D
el

ay
γ

L
ig

h
t

-n
es

s
β
′S

h
al

lo
w

-n
es

s
α

D
el

ay
γ

0.
00

0
1.

18
34

1.
00

00
1.

43
02

1.
15

74
1.

00
00

1.
43

09
1.

13
30

1.
00

00
1.

42
62

1.
11

25
1.

00
00

1.
42

06
1.

06
47

1.
00

00
1.

41
14

1
.0

4
2
9

1
.0

0
0
0

1
.4

1
1
0

0.
05

0
1.

13
58

1.
01

05
1.

40
73

1.
11

88
1.

01
02

1.
41

31
1.

10
35

1.
00

95
1.

41
19

1.
08

97
1
.0

0
6
2

1.
40

70
1.

05
19

1.
00

76
1
.4

0
4
7

1
.0

3
7
6

1.
00

76
1.

40
88

0.
07

5
1.

12
11

1.
01

78
1
.4

0
3
6

1.
10

67
1.

01
74

1.
40

99
1.

09
34

1.
01

63
1.

40
90

1.
08

12
1
.0

1
1
0

1.
40

39
1.

04
69

1.
01

32
1.

40
43

1
.0

3
4
9

1.
01

31
1.

40
91

0.
11

3
1.

10
38

1.
02

91
1.

40
25

1.
09

22
1.

02
86

1.
40

87
1.

08
10

1.
02

71
1.

40
80

1.
07

07
1
.0

1
8
7

1
.4

0
2
4

1.
04

07
1.

02
20

1.
40

58
1
.0

3
1
2

1.
02

19
1.

41
11

0.
16

9
1.

08
44

1.
04

63
1.

40
58

1.
07

54
1.

04
55

1.
41

15
1.

06
65

1.
04

36
1.

41
08

1.
05

82
1
.0

3
0
9

1
.4

0
4
0

1.
03

33
1.

03
54

1.
41

09
1
.0

2
6
5

1.
03

53
1.

41
60

0.
25

3
1.

06
38

1.
07

11
1.

41
59

1.
05

74
1.

07
01

1.
42

04
1.

05
07

1.
06

78
1.

41
96

1.
04

44
1
.0

4
9
2

1
.4

1
0
9

1.
02

52
1.

05
49

1.
42

09
1
.0

2
0
8

1.
05

47
1.

42
53

0.
38

0
1.

04
41

1.
10

53
1.

43
40

1.
03

97
1.

10
40

1.
43

72
1.

03
49

1.
10

16
1.

43
63

1.
03

07
1
.0

7
4
8

1
.4

2
4
6

1.
01

72
1.

08
14

1.
43

71
1
.0

1
4
7

1.
08

12
1.

44
02

0.
57

0
1.

02
72

1.
14

78
1.

46
02

1.
02

46
1.

14
64

1.
46

21
1.

02
15

1.
14

41
1.

46
12

1.
01

90
1
.1

0
6
8

1
.4

4
5
6

1.
01

03
1.

11
40

1.
45

93
1
.0

0
9
0

1.
11

41
1.

46
11

0.
85

4
1.

01
45

1.
19

85
1.

49
27

1.
01

31
1.

19
71

1.
49

37
1.

01
14

1.
19

51
1.

49
28

1.
01

01
1
.1

4
5
6

1
.4

7
2
9

1.
00

52
1.

15
26

1.
48

55
1
.0

0
4
5

1.
15

30
1.

48
68

1.
28

1
1.

00
64

1.
25

09
1.

52
69

1.
00

58
1.

24
99

1.
52

72
1.

00
50

1.
24

85
1.

52
66

1.
00

44
1
.1

8
7
3

1
.5

0
2
8

1.
00

19
1.

19
34

1.
51

21
1
.0

0
1
5

1.
19

38
1.

51
31

1.
92

2
1.

00
22

1.
29

52
1.

55
56

1.
00

20
1.

29
45

1.
55

56
1.

00
17

1.
29

38
1.

55
53

1.
00

14
1
.2

2
5
2

1
.5

2
8
3

1.
00

02
1.

22
95

1.
53

34
1
.0

0
0
0

1.
22

98
1.

53
40

2.
88

3
1.

00
06

1.
32

44
1.

57
35

1.
00

06
1.

32
42

1.
57

35
1.

00
05

1.
32

39
1.

57
34

1.
00

03
1
.2

5
3
0

1
.5

4
4
5

0.
99

96
1.

25
49

1.
54

60
0
.9

9
9
5

1.
25

45
1.

54
59

4.
32

5
1.

00
01

1.
34

48
1.

58
34

1.
00

01
1.

34
48

1.
58

33
1.

00
01

1.
34

47
1.

58
33

1.
00

00
1
.2

7
2
1

1.
55

32
0.

99
95

1.
27

31
1.

55
34

0
.9

9
9
4

1.
27

22
1
.5

5
3
0

6.
48

7
1.

00
00

1.
35

54
1.

58
73

1.
00

00
1.

35
54

1.
58

73
1.

00
00

1.
35

53
1.

58
72

0.
99

99
1.

28
15

1.
55

66
0.

99
94

1.
28

22
1.

55
65

0
.9

9
9
4

1
.2

8
0
8

1
.5

5
5
9

9.
73

1
1.

00
00

1.
35

92
1.

58
84

1.
00

00
1.

35
91

1.
58

84
1.

00
00

1.
35

91
1.

58
83

0.
99

99
1.

28
48

1.
55

75
0.

99
94

1.
28

54
1.

55
73

0
.9

9
9
4

1
.2

8
3
7

1
.5

5
6
8

14
.5

97
1.

00
00

1.
35

98
1.

58
85

1.
00

00
1.

35
98

1.
58

85
1.

00
00

1.
35

98
1.

58
85

0.
99

99
1.

28
53

1.
55

76
0.

99
94

1.
28

58
1.

55
74

0
.9

9
9
4

1
.2

8
4
1

1
.5

5
6
9

..
.

1.
00

00
1.

35
98

1.
58

85
1.

00
00

1.
35

98
1.

58
85

1.
00

00
1.

35
98

1.
58

85
0.

99
99

1.
28

53
1.

55
77

0.
99

94
1.

28
58

1.
55

74
0
.9

9
9
4

1
.2

8
4
1

1
.5

5
6
9

41

Chapter 3. Trade-off Between Wirelength and Path Length

1.00 1.02 1.04 1.06 1.08 1.10
Lightness '

1.00

1.02

1.04

1.06

1.08

1.10

1.12

Sh
al

lo
w

ne
ss

CL (RSMA)
FLUTE (RSMT)
shallowest RSMT
No refinement
SR (IEC only)
SR (IEC + LEF)
SR (all)
SR + SCES by NN
SR + SCES by R-tree

(a) Shallowness-lightness on nets with 4–7
pins

1.00 1.05 1.10 1.15 1.20 1.25 1.30
Lightness '

1.0

1.1

1.2

1.3

1.4

Sh
al

lo
w

ne
ss

CL (RSMA)
FLUTE (RSMT)
No refinement
SR (IEC only)
SR (IEC + LEF only)
SR (all)
SR + SCES by NN
SR + SCES by R-tree

(b) Shallowness-lightness on nets with
8–15 pins

1.0 1.1 1.2 1.3
Lightness '

1.0

1.2

1.4

1.6

1.8

2.0

Sh
al

lo
w

ne
ss

CL (RSMA)
FLUTE (RSMT)
No refinement
SR (IEC only)
SR (IEC + LEF only)
SR (all)
SR + SCES by NN
SR + SCES by R-tree

(c) Shallowness-lightness on nets with
16–31 pins

1.0 1.1 1.2 1.3
Lightness '

1.0

1.2

1.4

1.6

1.8

2.0

2.2

Sh
al

lo
w

ne
ss

CL (RSMA)
FLUTE (RSMT)
No refinement
SR (IEC only)
SR (IEC + LEF only)
SR (all)
SR + SCES by NN
SR + SCES by R-tree

(d) Shallowness-lightness on nets with
32+ pins

1.00 1.05 1.10 1.15
Lightness '

1.00

1.05

1.10

1.15

1.20

1.25

1.30

1.35

Sh
al

lo
w

ne
ss

CL (RSMA)
FLUTE (RSMT)
No refinement
SR (IEC only)
SR (IEC + LEF only)
SR (all)
SR + SCES by NN
SR + SCES by R-tree

(e) Shallowness-lightness on all nets

1.00 1.05 1.10 1.15
Lightness '

1.40

1.45

1.50

1.55

D
el

ay

CL (RSMA)
FLUTE (RSMT)
No refinement
SR (IEC only)
SR (IEC + LEF only)
SR (all)
SR + SCES by NN
SR + SCES by R-tree

(f) Delay-lightness on all nets

Figure 3.15: Effectiveness of post processing shown by shallowness-lightness and delay-
lightness trade-off on nets of various scales.

42

Chapter 3. Trade-off Between Wirelength and Path Length

0 5 · 10−2 0.1 0.15 0.2 0.25 0.3 0.35 0.4

4-7 pins

8-15 pins

16-31 pins

32+ pins

all nets

Avg. runtime (ms)

SALT
SR
SCES

Figure 3.16: Runtime breakdown of SALT with post processing.

(a) ABP/BRBC (b) KRY (c) PD (d) Bonn

Figure 3.17: Sample runs of various algorithms (ε = 1). (a) ABP/BRBC (shallowness
α = 2.24, lightness β′ = 1.51). (b) KRY (α = 1.43, β′ = 1.22). (c) PD (α = 1.11, β′ =
1.30) (d) Bonn (α = 1.22, β′ = 1.87).

most a factor of (1 + ε)2 compared to a lower bound.

Compared with all the other methods (including ABP, KRY, ES, Bonn, PD, and PD-

II), SALT shows superior performance, which mostly leads to both smaller wirelength

and shorter path lengths. The average situation is illustrated by Figure 3.18(a). It can

be clearly observed that our method has the best Pareto frontier between RSMT and

RSMA.

Figure 3.18(b) illustrates the delay and lightness of different methods, where SALT

still achieves a good trade-off. Though KRY may obtain a slightly smaller delay, the

wirelength cost is actually significant. Besides, the smaller Elmore delay there is usually

achieved by unnecessary long edges, which is much less preferable than assigning the edge

to a higher metal layer or buffering. For example in Figure 3.19, the longest path of SALT

(measured by Elmore delay) is the path from root r to pin v1. Comparing with that in

KRY, r − v1 path in SALT has the same path length but drives more capacitance load

before vertex v2. KRY reduces the delay by connecting v2 to r directly at the cost of

wirelength. However, appropriate layer assignment or buffering on r − v2 path will be

more economical in practice.

Lastly, we conduct a detailed comparison between SALT and PD-II, the closest com-

43

Chapter 3. Trade-off Between Wirelength and Path Length

1.0 1.2 1.4 1.6 1.8
Lightness '

1.0

1.1

1.2

1.3

1.4

1.5

Sh
al

lo
w

ne
ss

CL (RSMA)
FLUTE (RSMT)
ABP/BRBC
KRY
ES
Bonn
PD
PD-II
SALT w/o refinement
SALT

(a) Trade-off between shallowness and lightness

1.0 1.2 1.4 1.6 1.8
Lightness '

1.3

1.4

1.5

1.6

1.7

1.8

D
el

ay

CL (RSMA)
FLUTE (RSMT)
ABP/BRBC
KRY
ES
Bonn
PD
PD-II
SALT w/o refinement
SALT

(b) Trade-off between delay and lightness

Figure 3.18: Comparing SALT with other routing tree construction methods.

44

Chapter 3. Trade-off Between Wirelength and Path Length

r

v1

v2

(a) KRY (β′ = 1.572, γ = 1.292)

r

v1

v2

(b) SALT (β′ = 1.098, γ = 1.994)

Figure 3.19: Comparing SALT with KRY on a 16-pin net of superblue1. The trade-off
parameter ε leading to the smallest delay γ is picked.

1.00 1.05 1.10 1.15 1.20 1.25 1.30
Lightness '

1.0

1.2

1.4

1.6

1.8

2.0

2.2

Sh
al

lo
w

ne
ss

CL (RSMA)
FLUTE (RSMT)
PD-II
SALT w/o SCES
SALT

(a) Trade-off between shallowness and
lightness

1.00 1.05 1.10 1.15 1.20 1.25 1.30
Lightness '

1.00

1.05

1.10

1.15

1.20

1.25

N
or

m
al

iz
ed

 to
ta

l p
at

h
le

ng
th

CL (RSMA)
FLUTE (RSMT)
PD-II
SALT w/o SCES
SALT

(b) Trade-off between total path length
and lightness

Figure 3.20: Comparing SALT with PD-II on high-pin nets (# pins ≥ 32).

petitor among all other methods. In [3], the authors compare PD-II with the preliminary

version of SALT [6], which is without SCES. They use two metrics to measure the path

lengths. The first is our shallowness metric α = max{ dT (r,v)
dG(r,v)

|v ∈ V }; the second is the

total path length normalized by the total shortest-path distance, i.e.,
∑

v∈V dT (r,v)∑
v∈V dG(r,v)

. There,

PD-II wins SALT in some cases, especially for nets with 32+ pins. The experimental

results of PD-II and SALT (with and without SCES) on nets with 32+ pins are shown

in Figure 3.20. As we can see, if without SCES, SALT loses out to PD-II in total path

length (when lightness β′ is around 1.05–1.10). However, with the help of SCES, SALT

dominates PD-II. Regarding the shallowness-lightness trade-off, SALT is always superior

to PD-II, even without SCES.

45

Chapter 4

Trade-off Between Wirelength and

Skew

A problem similar to ZST is the hierarchical clustering (HC) [117]. In HC, each point

starts as a cluster by itself, and pairs of clusters are merged when moving up the hierarchy.

By retrospecting the classical DME algorithm, we found the equivalence between ZST

and HC. To be more specific, the wirelength of a ZST is a linear function of the sum of

diameters of its corresponding HC (see Figure 4.1 and Theorem 4.1 for a glance). With the

help of the new insight as well as the “BST by ZST” idea from [47,48], better algorithms

for both ZST and BST construction are devised. Our contributions are summarized as

follows.

� We proved the strict correspondence between the wirelength of ZST and the diam-

eter sum of HC.

� With this new insight, we designed an effective O(n log n)-time O(1)-approximation

algorithm and an optimal dynamic programming for ZST construction.

� We proposed a linear-time optimal tree decomposition algorithm. Together with

the black-box ZST construction, it leads to an improved BST generation method.

4.1 Zero-Skew Tree Properties

VLSI routing is in Manhattan space. Before formal illustration, we would like to define the

notations for distance. For two points p1 and p2, dist(p1, p2) represents their Manhattan

(l1) distance. For two sets of points Pa and Pb, their distance dist(Pa, Pb) is defined as

the smallest distance between a point in Pa and a point in Pb. That is, dist(Pa, Pb) =

minp1∈Pa,p2∈Pb
dist(p1, p2). We use linear delay model in this chapter.

Manhattan arc, the line segment with slope +1 or -1, is widely needed in ZST construc-

tion. For convenience and efficiency, the computation in the l1 space can be converted

46

Chapter 4. Trade-off Between Wirelength and Skew

𝑝3

𝑝1 𝑝4

𝑝2

(a) HC with diameter sum
= d({p3, p4}) + d({p2, p3, p4}) +

d(P) = 4 + 10 + 10 = 24.

𝑝3

𝑝1 𝑝4

𝑝2

(b) ZST corresponding to (a)
with wirelength

= 1
2(4 + 10) + 10 = 17.

𝑝3

𝑝1 𝑝4

𝑝2

(c) HC with diameter sum
= d({p3, p4}) + d({p1, p2}) +
d(P) = 4 + 8 + 10 = 22.

𝑝3

𝑝1 𝑝4

𝑝2

(d) ZST corresponding to (c)
with wirelength

= 1
2(4 + 8) + 10 = 16.

Figure 4.1: Equivalence between zero-skew tree (ZST) and hierarchical clustering (HC)
on points P = {p1, p2, p3, p4}.

to that in the l∞ space. More specifically, suppose the l∞ distance between p1 and p2 in

the coordinate system tilted by 45° is dist′(p1, p2). The distance in the l∞ space can be

obtained by scaling dist′(p1, p2) =
√

2
2
dist(p1, p2), and the Manhattan arc will become

axis-aligned.

4.1.1 Manhattan Circle

Manhattan circle C(o, r) is a circle in the Manhattan space with center o and radius r.

To be more specific, C(o, r) is the set of all points that are at a given Manhattan distance

r from a given point o (i.e., C(o, r) = {p|dist(p, o) = r}). Diameter d of a circle C is the

largest distance between any two points on the circle (i.e. d = maxp1,p2∈C dist(p1, p2)).

Note that d = 2r.

Circle C(o, r) is an internally tangent circle of circle C ′(o′, r′) if (i) C intersects C ′

(i.e., C ∩ C ′ 6= ∅), and C is inside C ′ (i.e., ∀p ∈ C, dist(p, o′) ≤ r′). This is illustrated by

Figure 4.2. Regarding the internally tangent circle, we have Lemma 4.1, which is similar

47

Chapter 4. Trade-off Between Wirelength and Skew

𝑜

𝑜′

𝑝1

𝑝2

Figure 4.2: Manhattan circle C(o, r) is an internally tangent circle of C ′(o′, r′).

for circles in the Euclidean space.

Lemma 4.1. If circle C(o, r) is an internally tangent circle of circle C ′(o′, r′), then

dist(o, o′) = r′ − r.

Proof. It can be proved by construction that there exists a point p1 ∈ C with dist(p1, o
′) =

r + dist(o, o′). To be more specific, there are two points at distance r from o on line oo′

(see Figure 4.2). The one further from o′ between the two can be such a p1. Obviously,

dist(p1, o
′) = dist(p1, o) + dist(o, o′). Besides, there is dist(p1, o

′) ≤ r′ since C is inside

C ′. Therefore,

dist(o, o′) = dist(p1, o
′)− dist(p1, o) ≤ r′ − r. (4.1)

Let point p2 ∈ C ∩ C ′. By triangle inequality,

dist(o, o′) ≥ dist(p2, o
′)− dist(p2, o) = r′ − r. (4.2)

Combining (4.1) and (4.2) leads to dist(o, o′) = r′ − r.

4.1.2 Manhattan Bounding Circle

For a set of points P , its Manhattan bounding circle (MBC) is a (minimum) Manhattan

circle covering all the points (see Figure 4.3(a)). Its radius r(P) (resp. diameter d(P)) is

the radius (resp. diameter) of the MBC. Note that for a point set P , there may be many

MBCs, but the radius as well as the diameter of the MBCs are all the same (Figure 4.3(b)).

For computational convenience, we can analyze and compute MBC in the 45°-tilted

coordinate system. Refer the (minimum) bounding box for P in this tilted coordinate

system as tilted bounding box (TBB) tbb(P). A Manhattan circle is an MBC of points P iff

it is an MBC of tbb(P). In this way, it is easy to see that the centers of all possible MBCs

of P form an Manhattan arc parallel to the shorter side of tbb(P), which will be called

the center segment cs(P) hereafter. We refer the length of the longer (resp. shorter) side

of tbb(P) as the width (resp. height) of tbb(P). There is thus d(P) = 2r(P) =
√

2width.

48

Chapter 4. Trade-off Between Wirelength and Skew

ℎ𝑒𝑖𝑔ℎ𝑡

𝑤𝑖𝑑𝑡ℎ

(a) The TBB (solid red) and an MBC
(dash blue) for P

(b) Centers of all possible MBCs form
center segment (solid blue)

𝑤𝑖𝑑𝑡ℎ

2

ℎ𝑒𝑖𝑔ℎ𝑡

𝑤𝑖𝑑𝑡ℎ

(c) Relationship between TBB and
center segment

Figure 4.3: Manhattan bounding circle (MBC), tilted bounding box (TBB), and center
segment for a set of points P .

Besides, the distance from an end of cs(P) to the further side of tbb(P) is width
2

(see

Figure 4.3(c)).

Regarding diameter d(P), Lemma 4.2 is obvious (same as Property 11 of [118]), which

provides another view to d(P). Essentially, there exists at least a point in P on each of

the two shorter sides of tbb(P) such that they determine the diameter d(P) of any MBC

of P as well as the maximum distance within P . Note that Lemma 4.2 does not hold for

the Euclidean metric.

Lemma 4.2. For a point set P , d(P) = maxp1,p2∈P dist(p1, p2).

For two point sets Pa and Pb, we say Pa dominates Pb if and only if r(Pa) = r(Pa∪Pb).
The two kinds of relationships are illustrated by Figure 4.4. We have Lemma 4.3 regarding

49

Chapter 4. Trade-off Between Wirelength and Skew

(a) No domination (b) Pa dominates Pb

Figure 4.4: Relationship between two point sets Pa and Pb.

domination. The proof is omitted due to the space limit.

Lemma 4.3. If two point sets Pa and Pb do not dominate each other, then dist(cs(Pa), cs(Pb)) =

2r(Pa∪Pb)−r(Pa)−r(Pb). If Pa dominates Pb, then dist(cs(Pa), cs(Pb)) ≤ r(Pa)−r(Pb).

Proof. Let Pab = Pa ∪ Pb.
Case 1: Pa and Pb do not dominate each other (Figure 4.4(a)).

Since Pa and Pb do not dominate each other, the largest distance d(Pab) must be

achieved by one point from each set. Suppose they are p∗a ∈ Pa and p∗b ∈ Pb. Therefore,

∀oa ∈ cs(Pa),∀ob ∈ cs(Pb),

dist(oa, ob) ≥ 2r(Pab)− dist(p∗a, oa)− dist(ob, p∗b)

≥ 2r(Pab)− r(Pa)− r(Pb),
(4.3)

where the first inequality is due to triangle inequality.

For arbitrary oab ∈ cs(Pab), there exist o∗a ∈ cs(Pa) and o∗b ∈ cs(Pb) such that

C(o∗a, r(Pa)), C(o∗b , r(Pb)) are inside C(oab, r(Pab)). We claim that such o∗a and o∗b can

achieve the lower bound in (4.3). That is, dist(cs(Pa), cs(Pb)) = dist(o∗a, o
∗
b) = 2r(Pab)−

r(Pa) − r(Pb). First, it is easy to see that p∗a ∈ C(o∗a, r(Pa)) ∩ C(oab, r(Pab)). Combining

with the fact that C(o∗a, r(Pa)) is inside C(oab, r(Pab)), it implies C(o∗a, r(Pa)) is the inter-

nally tangent circle of C(oab, r(Pab)). So is C(o∗b , r(Pb)). According to triangle inequality

and Lemma 4.1, there is

dist(o∗a, o
∗
b) ≤ dist(o∗a, oab) + dist(o∗b , oab)

= (r(Pab)− r(Pa)) + (r(Pab)− r(Pb))

= 2r(Pab)− r(Pa)− r(Pb).

(4.4)

50

Chapter 4. Trade-off Between Wirelength and Skew

Combining (4.3) and (4.4) together achieves dist(o∗a, o
∗
b) = 2r(Pab)− r(Pa)− r(Pb).

Case 2: Pa dominates Pb (Figure 4.4(b)).

Suppose o∗ab ∈ cs(Pab) and o∗b ∈ cs(Pb) realize dist(cs(Pab), cs(Pb)). There exists

p∗b ∈ Pb with dist(p∗b , o
∗
b) = r(Pb). Besides, dist(p∗b , o

∗
ab) ≤ r(Pab) = r(Pa). By triangle

inequality,

r(Pa) ≥ dist(p∗b , o
∗
ab)

≥ dist(p∗b , o
∗
b) + dist(o∗b , o

∗
ab)

= r(Pb) + dist(cs(Pab), cs(Pb)).

(4.5)

Note that an MBC for Pab is always an MBC for Pa, so cs(Pab) ⊆ cs(Pa). Therefore,

dist(cs(Pab), cs(Pb)) ≥ dist(cs(Pa), cs(Pb)). Together with (4.5), the proof is completed.

4.1.3 ZST/DME by Manhattan Bounding Circle

ZST/DME algorithm [44] can find the optimal Steiner node placement for a given tree

topology on a set of points. Note that in a ZST T , the given points/sinks can never

be Steiner nodes due to the zero skew constraint. For a tree T , we denote its vertex v

(either leaf or Steiner node) by v ∈ T and denote the leaves of the subtree rooted at v

as leaves(v). Path lengths from v to leaves(v) are all the same and referred as p(v). In

ZST/DME, the merging segment ms(v) of vertex v ∈ T is a set of possible placements of

v. There are two phases in ZST/DME. In the first bottom-up phase, a tree of merging

segments is computed recursively. In the top-down phase, the merging point achieving

the minimum wirelength is picked according to the location of its parent Steiner node.

The reader may refer to [44] for algorithmic details, but in the bottom-up phase, ms(v)

for a vertex v with two children va and vb is essentially computed as follows. Denote the

nonnegative edge cost (length) from v to va as ea and similarly for vertex vb. The objective

is to minimize ea + eb, which will be a part of the wirelength of the final ZST1. Suppose

w.l.o.g. that p(va) ≤ p(vb). Zero skew among leaves(v) = leaves(va)∪ leaves(vb) requires

ea + p(va) = eb + p(vb). That is,

ea − eb = p(vb)− p(va). (4.6)

Meanwhile, by triangle inequality,

ea + eb ≥ dist(ms(va),ms(vb)), (4.7)

1It can be proved that the greedy proposal here is sufficient for obtaining the minimum
wirelength of the whole ZST [44].

51

Chapter 4. Trade-off Between Wirelength and Skew

Here, if p(vb)− p(va) ≤ dist(ms(va),ms(vb)), then ea + eb = dist(ms(va),ms(vb)). Other-

wise, ea + eb = p(vb)− p(va), where ea = p(vb)− p(va) and eb = 0.

Based on Lemma 4.3, we can prove an intrinsic correspondence between DME and

MBC (Lemma 4.4). It says that for a vertex v, the path length p(v) equals the radius

r(leaves(v)) of its leaves, while its merging segment ms(v) is exactly the center segment

cs(leaves(v)) of its leaves. For example, in Figure 4.1, the path length from the ZST

root is always r(P) = 5, regardless of the topology. Similarly, the merging segment of

the ZST root is uniquely determined by tbb(P) (since width = height in tbb(P) for this

example, cs(P) degenerates to a point). The key point of the proof is that whether

p(vb) − p(va) ≤ dist(ms(va),ms(vb)) depends on the domination relationship between

leaves(va) and leaves(vb).

Lemma 4.4 (DME-MBC Correspondence). In ZST/DME, for a vertex v, (i) p(v) =

r(leaves(v)); (ii) ms(v) = cs(leaves(v)).

Proof. By induction. Denote r(leaves(v)) as r(v) and cs(leaves(v)) as cs(v) for short. It

is definitely true for a leaf v, since (i) p(v) = r(v) = 0, and (ii) ms(v) = cs(v) degenerates

from a segment to a fixed point. Suppose it is true for children va and vb of vertex v.

(a) We will first prove the inductive part of p(v) = r(v).

Assume w.l.o.g that r(va) ≥ r(vb). Note that eb−ea = p(va)−p(vb) = r(va)−r(vb) ≥ 0.

There are two cases.

Case 1: No domination, i.e., r(v) > r(va) ≥ r(vb). According to Lemma 4.3,

dist(ms(va),ms(vb)) = dist(cs(va), cs(vb)) = 2r(v)− r(va)− r(vb). Consider,

eb − ea = r(va)− r(vb)

< 2(r(v)− r(va)) + r(va)− r(vb)

= 2r(v)− r(va)− r(vb)

= dist(ms(va),ms(vb)),

(4.8)

where the DME algorithm will let eb + ea achieve its lower bound dist(ms(va),ms(vb)).

Then, p(v) = 1
2
(p(va) + p(vb) + ea + eb) = 1

2
(r(va) + r(vb) + dist(ms(va),ms(vb))) =

1
2
(2r(v)) = r(v).

Case 2: Having domination, i.e., r(v) = r(va) ≥ r(vb). According to Lemma 4.3,

eb − ea = r(va)− r(vb)

≥ dist(cs(va), cs(vb))

= dist(ms(va),ms(vb)).

(4.9)

In this situation, DME lets ea = 0 and eb = dist(ms(va),ms(vb)). Therefore, p(v) =

p(va) + ea = p(va) = r(va) = r(v).

52

Chapter 4. Trade-off Between Wirelength and Skew

(b) For proving the induction on ms(v) = cs(v), we will first show that ms(v) ⊆ cs(v).

For arbitrary p ∈ va, there is dist(p, v) = dist(p, va) + dist(v, va) ≤ r(va) + p(v)− p(va) =

r(v). Similar for p ∈ vb. That is, for p ∈ v, there is dist(p, v) ≤ r(v). Therefore, v should

be an MBC center of v.

We then prove that ms(v) ⊇ cs(v). That is, for arbitrary o ∈ cs(v), dist(o,ms(va)) =

p(v) − p(va) and dist(o,ms(vb)) = p(v) − p(vb). By va ⊂ r(v) and Lemma 4.3, we have

dist(o, cs(va)) = dist(o,ms(va)) = r(v)−r(va) = p(v)−p(va). Similarly dist(o,ms(vb)) =

p(v)− p(vb) also holds and completes the proof.

In this way, the merging segments in DME can be more efficiently computed. More-

over, the new insight unlocks several better clock tree construction methods, which will

be introduced later.

4.1.4 ZST by Hierachical Clustering

On a set of point P , a hierachical clustering (HC) [117] is a hierachy of clusters with each

cluster composed of two sub-clusters or points. There are generally two approaches for

creating it. In the agglomerative approach, each point starts as a cluster by itself, and

pairs of clusters are merged and move up the hierarchy. By the divisive one, all points

start in one cluster, and splits are performed recursively as one moves down the hierarchy.

W.l.o.g, assume that any ZST is binary (i.e., each Steiner node has two children). If

a Steiner node has three (or more) children, overlapped Steiner node(s) can be inserted

to make it binary without affecting the actual structure. In this way, a ZST topology

T implies a HC, where leaves(v) of every v ∈ T is treated as a cluster, and vice versa

(see Figure 4.1 for two ZST/HC instances on the same set of points). Furthermore,

we prove Theorem 4.1, which shows the equivalence between ZST and HC. To be more

specific, the wirelength of a ZST length(T) is a linear function of the sum of diameters∑
v∈T d(leaves(v)) of its corresponding HC (note that d(P) is a constant). Besides, note

that Theorem 4.1 is stronger than Lemma 2.1 of [48] and implies the later.

Theorem 4.1 (ZST-HC Equivalence). For points/sinks P in the Manhattan space, a ZST

T has a wirelength cost length(T) equivalent to the sum of diameters
∑

v∈T d(leaves(v))

of its corresponding HC: length(T) = 1
2
(
∑

v∈T d(leaves(v)) + d(P)).

Proof. Simplify notation r(leaves(v)) as r(v). We will prove length(T) = 1
2
(
∑

v∈T d(leaves(v))+

d(P)) =
∑

v∈T r(v) + r(P) by induction.

Denote the subtree rooted at v as Tv. The claim then becomes length(Tv) =
∑

u∈Tv r(u)+

r(v). It is trivial for a leaf v, since (i) length(Tv) = 0, and (ii) v = {v}.
Suppose it is true for children va and vb of vertex v. Note that Tv = Tva + Tvb + {v}.

Then it is sufficient to prove that length(T)− length(Tva)− length(Tvb) =
∑

u∈{v} r(u) +

r(v) − r(va) − r(vb) = 2r(v) − r(va) − r(vb). Meanwhile, according to Lemma 4.4, there

53

Chapter 4. Trade-off Between Wirelength and Skew

Algorithm 4.1 ZST by Iterative Merging

Require: Sinks P
Ensure: ZST T
1: Initialize clusters with each sink being a cluster by itself
2: for i = 1, 2, ..., |P | − 1 do
3: Merge the two clusters with the smallest diameter of their union among all pairs
4: end for
5: Run DME top-down phase on the HC to realize the ZST T

is length(T) − length(Tva) − length(Tvb) = ea + eb = (p(v) − p(va)) + (p(v) − p(vb)) =

2p(v)− p(va)− p(vb) = 2r(v)− r(va)− r(vb).

4.1.5 Proof of Theorem 4.3

Let P ′B be a trie node in the sub-trie rooted at PB. Due to the enforced order of points

in the trie and πi < σj, we have P ′B ∩ PA = ∅. That is, PA ⊆ (P − P ′B) and there is

cost(T ∗(PA)) ≤ cost(T ∗(P − P ′B))

The lemma essentially says that the optimal sub-solution T ∗(P ′B) cannot be part of the

optimal solution T ∗(P). Suppose it is false and there is an optimal ZST/HC T ′′ on P with

T ∗(P ′B) being a sub-solution. For T ′′, we can remove T ∗(P ′B) and get another ZST/HC T ′′′.

After the removal, the original ancestors of T ∗(P ′B) on T ′′ may have smaller diameters,

while the sibling subtree of T ∗(P ′B) can move up. Therefore, cost(T ′′) ≥ cost(T ′′′) +

cost(T ∗(P ′B)) ≥ cost(T ∗(P − P ′B)) + cost(T ∗(P ′B)) ≥ cost(T ∗(PA)) + cost(T ∗(P ′B)) >

cost(T ′) ≥ cost(T ∗(P)), which is a contradiction.

4.2 Zero-Skew Tree Construction

The zero-skew tree (ZST) problem has been converted to a hierarchical clustering (HC)

problem with the diameter sum as objective, then how good can HC be solved? Two

algorithms are proposed in this section.

4.2.1 Efficient and Effective Iterative Merging

With Theorem 4.1, a simple algorithm that comes up immediately is to iteratively merge

two clusters with the smallest diameter resulted (Algorithm 4.1). Complete-linkage clus-

tering (c-link) [117] is a popular agglomerative HC method where the merging in each

iteration minimizes the maximum intra-cluster distance. It is noticeable that our algo-

rithm is actually c-link under the Manhattan metric since the diameter of a cluster equals

the the maximum intra-cluster distance in the Manhattan metric (Lemma 4.2).

Algorithm 4.1 is similar to Greedy-DME [46] except that the preference in selecting

pairs is changed. The preference is changed from the distance between two merging

54

Chapter 4. Trade-off Between Wirelength and Skew

40 9 13 21

𝑝1 𝑝2 𝑝3 𝑝4 𝑝5

(a) Our HC with diameter sum
= 4 + 4 + 12 + 21 = 41.

40 9 13 21

𝑝1 𝑝2 𝑝3 𝑝4 𝑝5

𝒗𝟏

𝑣2

𝑣4𝑣3

(b) Our ZST with wirelength
= 4 + 4 + 10 + 13 = 31.

40 9 13 21

𝑝1 𝑝2 𝑝3 𝑝4 𝑝5

(c) Greedy-DME HC with diameter
sum = 4 + 4 + 13 + 21 = 42.

40 9 13 21

𝑝1 𝑝2 𝑝3 𝑝4 𝑝5

𝒗𝟏

𝑣2

𝑣4𝑣3

(d) Greedy-DME ZST with
wirelength = 4 + 4 + 9 + 14.5 = 31.5.

Figure 4.5: 1D example showing the impact of different preferences in iterative merging.
Ours prefers small diameter of merged cluster, while Greedy-DME prefers small distance
between two merging segments.

segments to the diameter of the merged cluster. The diameter objective in our iterative

merging has more global view and tends to generate better results. In Section 4.4, the

experimental results (Table 4.1 and Figure 4.8) will evidence the difference. Here, an 1D

example in Figure 4.5 shows the idea. Note that in 1D, a “merging segment” degenerates

to a point. In the first two iterations, both methods get clusters {p1, p2} and {p3, p4}. In

the third iteration, there are two choices (ignoring the bad choice of merging {p1, p2} and

{p5}). The first is merging {p3, p4} with {p5}, which gives a merged diameter of 12 and

a merging segment distance of 10. The second choice is merging {p1, p2} and {p3, p4},
which gives a merged diameter of 13 and a distance of 9. It turns out that the first choice

with a smaller diameter is better with an eventual wirelength of 31 < 31.5. The detailed

structural insight is in the proof of Theorem 4.1.

Moreover, Algorithm 4.1 is an O(1)-approximation for ZST/HC. Before showing it,

we first introduce the non-hierarchical clustering problem, which serves for the HC lower

bound. The diameter k-clustering [119–121] on points P is to partition P into k clusters

and minimize the maximum diameter of the k clusters. The problem is NP-hard [119]

and has a simple 2-approximation algorithm [120], where the approximation ratio is tight

for l1 distance [121]. A lower bound of HC on P is thus the diameter sum of a series

of optimal k-clustering on P with k = 1, 2, ..., |P | − 1. Essentially, in ZST/HC, every

Steiner node v can correspond a unique k-clustering with the maximum diameter being

d(leaves(v)). The mapping can be obtained as follows. First, sort the Steiner nodes

by d(leaves(v)) in descending order into v1, v2, ..., v|P |−1. To get k clusters, we split at

v1, v2, ..., vk−1. Take the ZST/HC in Figures 4.5(a) and 4.5(b) as an example. Splitting

at v1 and v2 leads to the 3-clustering of {{p1, p2}, {p3, p4}, {p5}}, where the maximum

55

Chapter 4. Trade-off Between Wirelength and Skew

diameter is d(leaves(v3)).

According to Theorem 24 of [122], in the lp space, any k-clustering induced by c-link

is an O(1)-approximation of the optimal k-clustering. Together with Theorem 4.1 and

the above lower bound for ZST/HC, we have the following theorem.

Theorem 4.2. Algorithm 4.1 is an O(1)-approximation for ZST. 2

Regarding the efficiency of Algorithm 4.1, it can be done in O(n log n) time and O(n)

space [124] with the help of the data structure for dynamic closest pair queries [125].

4.2.2 Other Approximation Algorithms

Based on the 2-approximation algorithm [120] for k-clustering, Dasgupta proposes a de-

terministic algorithm and a randomized algorithm for constructing HC under any met-

ric space [126]. The induced k-clustering at every level of the HC is at most 8 times

and 2e ≈ 5.44 times the optimal k-clustering respectively. This directly leads to an

8-approximation and a 5.44-approximation for ZST based on the same argument for The-

orem 4.2. However, the method is for arbitrary metric. In Manhattan space, it does not

perform better than our iterative merging.

4.2.3 Optimal Dynamic Programming

In the ZST/HC problem, it is easy to show that an optimal ZST consists of two optimal

sub-ZSTs (the two subtrees at the root), which enables a dynamic programming approach.

The general idea is to expand the optimal solutions sink after sink, where the optimal

ZST on a set P ′ is obtained by checking every bipartition (PA, PB) of P ′ and looking up

the optimal ZSTs on subsets PA and PB.

The major obstacle of such approach is the large number (O(2|P
′|)) of possible bipar-

titions. By regarding ZST as HC, this dynamic programming approach however becomes

more practical. First, it is more efficient to compute the diameter cost. Moreover, many

inferior partitions can be identified and thus pruned (e.g., by the upper bound condition).

Trie (prefix tree) [127] is used for efficiently storing and retrieving the optimal sub-

ZST/HCs (see Figure 4.6). Each node in the trie represents a partition/subset P ′ ⊆ P

of the input sinks P . Suppose P ′ = {pπ1 , pπ2 , ..., pπi} and π1 < π2 < ... < πi. The

optimal cost and bipartition of P ′ will be stored at the corresponding trie node, which is

at the end of the path (pπ1 , pπ2 , ..., pπi) (starting from the root of the trie). For example

in Figure 4.6(a), the optimal cost of partition {p1, p3} is stored at the end of path (p1, p3).

2The hidden constant here is forwarded from Theorem 24 of [122] and is not small. We
conjecture that a much tighter approximation ratio exists. In the experiment on realistic and
random cases, the gap between Algorithm 4.1 and the optimal solution observed almost never
exceeds 10%. The largest gap encountered on artificial cases is 22% (Fig. 11 of [123]).

56

Chapter 4. Trade-off Between Wirelength and Skew

𝑝1

𝑝2

𝑝2

𝑝3

𝑝3 𝑝3

𝑝3

store information for

partition 𝑝1, 𝑝3

(a) Trie for three sinks {p1, p2, p3}

𝑝1

𝑝2

𝑝2

𝑝3

𝑝3 𝑝3

𝑝3

𝑝4

𝑝4𝑝4 𝑝4

𝑝4 𝑝4 𝑝4

𝑝4

store information for

partition 𝑝1, 𝑝3, 𝑝4

(b) Trie for four sinks {p1, p2, p3, p4}

Figure 4.6: Trie for storing and retrieving the optimal sub-ZST/HC.

In such a trie data structure, a partition P ′ takes O(1) memory only. Retrieving it takes

O(|P ′|) time, which can be amortized to O(1) if conducted incrementally.

The optimal trie-based dynamic programming (Algorithm 4.2) is as follows. Sinks

are added one after another (line 4). For each new sink pk, every existing trie node (i.e.,

partition) P ′ is expanded with it (line 5). To obtain the optimal ZST/HC on the expanded

partition P ′′ = P ′ ∪ {pk}, all the bipartitions of P ′′ are enumerated (line 9). For each

of the bipartitions, the costs of the two partitions need to be retrieved from the trie in

order to compute the cost after merging (line 10). Note that one of the two partitions can

have its cost retrieved incrementally by following a traversal on the trie to save runtime.

An important issue for the dynamic programming is to order the generation of the trie

nodes properly. The order of expanding the trie nodes should guarantee that a partition

will have all of its sub-partitions expanded before its own expansion and with their costs

available for looking up. The pre-order traversal that iterates children with larger indexes

first will suffice.

There is an effective pruning technique in Algorithm 4.2, which is by an upper bound

of the ZST/HC cost. Refer the optimal ZST/HC on points P as T ∗(P) and the cost (di-

ameter sum) of a ZST/HC T as cost(T). At the beginning of the dynamic programming,

Algorithm 4.1 is invoked to generate a sub-optimal ZST/HC T ′ on input sinks P (line 1).

Its diameter sum cost(T ′) can then serve as an upper bound for pruning according to

Theorem 4.3. Note that the order of adding sinks influences the effectiveness of the prun-

ing. If early sinks tend to form clusters with larger diameters, the upper bound condition

will be triggered more frequently. We adopt the order of the furthest-first traversal [120],

which maximizes the minimum pairwise distances of the first k points during the traversal.

Theorem 4.3 (Upper Bound Condition). In the dynamic programming on input points P ,

suppose a bipartition of a node/partition P ′ is PA = {pπ1 , ..., pπi} with PB = {pσ1 , ..., pσj}
(P = PA ∪ PB and πi < σj). If the sum of their optimal cost exceeds the upper bound,

i.e., cost(T ∗(PA)) + cost(T ∗(PB)) > cost(T ′), then the sub-trie rooted at node PB can be

pruned.

57

Chapter 4. Trade-off Between Wirelength and Skew

Algorithm 4.2 Optimal ZST by Dynamic Programming

Require: Sinks P with |P | = n
Ensure: Optimal ZST T
1: Compute ZST/HC T ′ on P by Algorithm 4.1 as an upper bound
2: Get the furthest-first traversal (p1, p2, ..., pn) of P
3: Initialize an empty trie
4: for all k = 1, 2, ..., n do
5: for all existing trie node P ′ do . By pre-order traversal
6: Skip if P ′ is marked as inferior
7: Initialize new trie node P ′′ = P ′ ∪ {pk}
8: Mark & skip if P ′′ violates convex hull condition
9: for all bipartition of P ′′ do

10: Retrieve sub-partition cost from the trie
11: Mark if violating upper bound condition
12: Update the optimal cost & solution of P ′′

13: end for
14: Add P ′′ to be a child of P ′

15: end for
16: end for
17: Obtain the optimal HC by backtracking from trie node P
18: Run DME top-down phase on the HC to realize the ZST T

Algorithm 4.3 ZST Refinement by Dynamic Programming

Require: Size of enumeration k, ZST vertex v (|leaves(v)| ≥ k)
Ensure: Refined ZST beneath v
1: Vertices U ← v.children
2: while |U | < k do
3: u∗ ← arg minu∈U d(leaves(u))
4: U ← U − u∗ + u∗.children
5: end while
6: Get the optimal ZST/HC above U by Algorithm 4.2

Proof. See Section 4.1.5.

Besides constructing an optimal ZST, Algorithm 4.2 can be generalized for improving

a ZST/HC T (Algorithm 4.3). For a vertex v ∈ T , the ZST/HC beneath it can be

refined by local reconstruction. Essentially, the hierarchy below v is first recursively

broken to obtain k descendants U with their corresponding clusters {leaves(u)|u ∈ U}
having small diameters (lines 1–5). The optimal local HC above U is then obtained by

Algorithm 4.3. The original Algorithm 4.3 runs on points/sinks, but it can be trivially

extended for working on several clusters. Note that the local change here has no impact

to the topologies either beneath U or above v according to Lemma 4.4. By setting k as a

constant (eight in our implementation) and running Algorithm 4.3 on every v ∈ T (with

|leaves(v)| ≥ k to make sure k descendants exist), the refinement takes O(n) time.

58

Chapter 4. Trade-off Between Wirelength and Skew

Algorithm 4.4 BST by Combining Light Topology with ZST

Require: Sinks P , skew bound b
Ensure: BST TB
1: Construct light topology TM on P (e.g., by RSMT heuristics)
2: Forests FM ← decomposition of TM with maximum distance being 2b by Algorithm 4.5
3: Taps PM ← centers of FM
4: T ← ZST on PM by Algorithm 4.1
5: return TB ← T ∪ FM

4.3 Bounded-Skew Tree Construction

Inspired by [47,48], our bounded-skew tree (BST) construction is to graft light topologies

on a backbone of ZST. Compared with BST/DME [50], there are two significant differ-

ences. First, the flexibility of skew tolerance is put on lower levels (closer to leaves) instead

of allocating over all levels by chance. Second, the algorithm is a simple combination of

the efficient black-box constructions for light topologies and ZSTs, which means ease of

implementation and runtime efficiency.

The algorithmic flow is described by Algorithm 4.4. The routing topology on the input

sinks P is initialized to be a very light one TM , e.g., generated by the rectilinear Steiner

minimal tree (RMST) heuristics like FLUTE [25] (line 1). In order to satisfy the skew

bound b, TM is decomposed into several subtrees, where the distance between any two

vertices in the same subtree along tree edges does not exceed dmax = 2b (line 2). For each

of the obtained subtrees, there thus exists a center that can reach all the vertices of the

subtree within a distance of b. The centers PM are then used as taps connecting to the

clock source by a ZST T (line 4). In this way, distances from the source to sinks P are

between p(T) and p(T) + b, where p(T) is the path length of T (from the clock source to

PM). A BST is thus resulted.

The core algorithm that bridges RSMT and ZST is the optimal tree decomposition

(Algorithm 4.5). It decomposes an input tree TM into a minimum possible number of

subtrees under the distance constraint dmax. A post-order traversal on TM is run after a

root is specified (line 3). The information that a vertex u passes to its parent v is u.depth,

which is the longest path from v to the current subtree of u (after possible decomposition

of its original subtree). There may be multiple optimal decompositions for the original

subtree of u. During the algorithm, u.depth is made as small as possible among them.

Lemma 4.5 explains how the invariant on u.depth is kept by the greedy condition (line 12).

The proof is omitted. By induction, we can prove Theorem 4.4 on the optimality of the

whole algorithm.

Lemma 4.5. In Algorithm 4.5, for children ui and uj of vertex v, if ui.depth+uj.depth >

dmax, at least one of them should be decomposed from v.

59

Chapter 4. Trade-off Between Wirelength and Skew

Algorithm 4.5 Optimal Tree Decomposition

Require: Tree TM (VM , EM , wM), maximum distance dmax allowed within each subtree
Ensure: Forest FM with number of trees minimized
1: FM ← TM
2: v.depth← 0, ∀v ∈ VM
3: Make TM rooted by specifying an arbitrary vertex as root
4: PostOrderTraversal(root)
5: function PostOrderTraversal(v)
6: v.depth← wM (v, v.parent) and return if v is a leaf
7: for all u ∈ v.children do
8: PostOrderTraversal(u)
9: end for

10: Sort v.children by descending depth to u1, u2, ...
11: for i = 1, 2, ..., |v.children| − 1 do
12: if ui.depth+ ui+1.depth > dmax then
13: Remove edge (ui, v) from FM
14: ui.depth← 0
15: end if
16: end for
17: v.depth← maxu∈v.children u.depth+ wM (v, v.parent)
18: end function

Theorem 4.4. For a tree T , Algorithm 4.5 generates a decomposition with the minimum

number of subtrees.

The time of Algorithm 4.5 is O(n), because each vertex is processed once and in O(1)

time. Note that the sorting in line 10 is in constant time due to the bounded degree

of a vertex in RSMT. Moreover, it can be avoided by scanning v.children a few passes.

Essentially, all children with depth ≤ 1
2
dmax can always be kept, while all children with

depth > 1
2
dmax should be split except at most one.

4.4 Experimental Results

We implement our ZST and BST construction methods by C++ on a 3.8 GHz Linux

machine. There are two kinds of benchmarks tested. The first is the realistic benchmark

(prim1-2 from [42], r1-r5 from [45], and ISPD 2019 and 2010 contest benchmarks [128,

129]). The second is a large number of random nets with different number of sinks. We

generate 100 nets for each number of sinks under a uniform distribution.

For ZST construction on realistic cases (Table 4.1), our iterative merging (Algo-

rithm 4.1, Dim Sum) is compared with other topology generation methods including

MMM [42], Rooted Kruskal [48], geometric merging algorithm (GMA) [43], balance bipar-

tition (BB) [44], and Greedy-DME [46]. The results of GMA and BB are cited from [44].

The others are implemented by ourselves. The only implementation difference between

Greedy-DME and Dim Sum is the score of merging a pair (the distance between two

60

Chapter 4. Trade-off Between Wirelength and Skew

Table 4.1: Wirelength Comparison of ZST Methods on Realistic Benchmarks (unit: µm)

Benchmarks
[42] [45] Avg.

ratiop1 p2 r1 r2 r3 r4 r5
sinks 269 594 267 598 862 1903 3101

MMM + DME 149 373 1601 3240 4165 8218 12274 1.248
Rooted Kruskal + DME 142 341 1461 2837 3711 7656 11052 1.136

GMA + DME 140 350 1497 3013 3902 7782 11665 1.173
BB + DME 141 361 1500 3010 3908 8000 11757 1.185

Greedy DME 133 314 1313 2566 3339 6707 9943 1.028
Dim Sum w/o refinement 131 309 1297 2568 3285 6631 9801 1.015
Dim Sum w/ refinement 128 306 1272 2506 3248 6545 9711 1.000

Benchmarks
ISPD 2009 [128] ISPD 2010 [129] Avg.

ratiof11 f12 f21 f22 f31 f32 f33 f34 f35 fnb1 fnb2 1 2 3 4 5 6 7 8
sinks 121 117 117 91 273 190 209 157 193 330 440 1107 2249 1200 1845 1016 981 1915 1134

MMM + DME 186 171 205 113 439 321 315 270 324 45.2 120 355 636 57.8 126 66.3 49.6 93.3 61.9 1.333
Rooted Kruskal + DME 190 171 202 116 420 314 317 257 290 41.5 110 306 564 31.2 99.8 45.6 38.5 71.1 44.2 1.138

Greedy DME 174 156 192 105 380 291 292 241 273 36.6 96.6 277 510 28.2 87.4 40.4 34.0 62.6 40.2 1.032
Dim Sum w/o refinement 176 157 184 106 375 283 287 238 268 35.0 95.4 273 504 27.8 86.6 40.0 33.3 61.5 39.2 1.016
Dim Sum w/ refinement 171 153 182 103 369 281 282 236 264 34.7 93.6 269 496 27.6 85.5 39.0 32.7 60.6 38.8 1.000

22 24 26 28 210 212 214 216

10−4

10−2

100

sinks

A
v
g.

ru
n
ti

m
e

(s
)

w/ refinement

w/o refinement

Figure 4.7: Runtime of Dim Sum.

merging segments v.s. the diameter of the merged cluster), where the simple change

leads to 1.5% improvement on average. Together with the dynamic-programming-based

refinement, the wirelength is furthered improved by 1.6%.

To systematically know the optimality of the methods, a batch test is conducted with

random nets. A solid reference is the optimal ZST generated by the dynamic programming

(Algorithm 4.2, Optimal Dim Sum). But it does not scale and is thus used on the small

nets with up to 20 sinks. Even though Optimal Dim Sum is not polynomial-time, it is

significantly more efficient than the ILP in [56]. The optimal BST by this ILP needs more

time as skew bound decreases; for a relative skew bound of 0.3 and on 16 sinks, it already

takes 3477.73 s [56]. Meanwhile, Optimal Dim Sum takes only 1.08 s for 16 sinks. In

Figure 4.8(a), each data point represents the average of the normalized wirelength on 100

nets. As the number of sinks increases, the average gap from Dim Sum to Optimal Dim

Sum becomes larger. However, for 20 sinks, Dim Sum (with refinement) still gets a small

61

Chapter 4. Trade-off Between Wirelength and Skew

2 4 6 8 10 12 14 16 18 20
1

1.1

1.2

sinks

A
v
g.

n
o
rm

al
iz

ed
w

ir
el

en
gt

h

MMM + DME Rooted Kruskal Greedy DME

Dim Sum w/o refinement Dim Sum w/ refinement

(a) On small nets. Wirelength normalized by Optimal Dim Sum.

22 24 26 28 210 212 214 216

1

1.1

1.2

sinks

A
v
g.

n
or

m
al

iz
ed

w
ir

el
en

gt
h

(b) On large nets. Wirelength normalized by Dim Sum w/
refinement.

Figure 4.8: Wirelength comparison of ZST methods on random nets.

gap of 0.22%, while that of Greedy-DME is as large as 3.88%. Besides, note that Optimal

Dim Sum on average takes 24.6 s with the upper-bound pruning and 149.7 s without

pruning, but Dim Sum takes 0.7 ms. With more sinks (up to 65536 in Figure 4.8(b)),

Dim Sum with refinement is used as the reference for normalization. The improvement

over Greedy-DME reaches the peak of around 4% at 32 sinks. Figure 4.7 shows the

scalablity of Dim Sum. For 65536 sinks, even with refinement, it still needs 6.71 s only.

We implement our BST method (Algorithm 4.4) with RSMT heuristics FLUTE [25]

for initial topologies. Figure 4.9 shows the comparison with BST/DME [50,130]. The im-

plementation of BST/DME is obtained from its authors [131]. We use the wirelength and

skew of FLUTE to normalize the result on each net. The input skew bound is set to 0, 0.05,

0.1, ..., 1 of the skew of FLUTE. Due to the space limit, we only show two skew-wirelength

trade-off curves. One is for r5, the largest net among those publicly-available cases (Fig-

62

Chapter 4. Trade-off Between Wirelength and Skew

0 0.2 0.4 0.6 0.8 1

1

1.2

1.4

1.6

1.8

Normalized skew

N
or

m
al

iz
ed

W
L

FLUTE
Dim Sum

BST/DME
Our BST

(a) Wirelength on case r5 with 3101 sinks.

0 0.2 0.4 0.6 0.8 1

1

1.2

1.4

1.6

1.8

Avg. normalized skew

A
v
g.

n
o
rm

al
iz

ed
W

L

FLUTE
Dim Sum

BST/DME
Our BST

(b) Wirelength on 100 random nets with
16384 sinks.

22 24 26 28 210 212 214 216

10−4

10−2

100

sinks

A
v
g.

ru
n
ti

m
e

(s
)

BST/DME
Our BST

(c) Runtime on random nets with various sizes.

Figure 4.9: Comparison between BST/DME and our BST construction method.

ure 4.9(a)). The other is for the 100 random nets with 16384 sinks (Figure 4.9(b)). Here,

our method shows better Pareto frontiers compared with BST/DME. In general, as the

skew bound becomes larger, a smooth decrease of wirelength from ZST to RSMT can also

be observed. Besides, our method is significantly more efficient than BST/DME. For each

method and each number of sinks, Figure 4.9(c) shows an average runtime of all 100 nets

and all 21 skew bounds. For relatively large nets, a 10× speed-up stably exists.

63

Part III

Multiple-Net Routing

64

Chapter 5

Detailed Routing

In this chapter, we proposes Dr. CU, a detailed routing framework that is superiorly

scalable in runtime as well as memory usage and provides more correct-by-construction

design rule satisfaction. Our contributions can be summarized as follows.

� We design a set of two-level sparse data structures for a 3D detailed routing grid

graph of enormous size.

� We develop an optimal correct-by-construction path search that captures the minimum-

area constraint.

� We also propose an efficient bulk synchronous parallel scheme to further reduce the

turn-around time of the detailed routing process.

The source code of Dr. CU is also publicly available at https://github.com/

cuhk-eda/dr-cu.

The remainder of this chapter is organized as follows. Section 5.1 introduces the

formulation of the VLSI detailed routing problem. Section 5.2 and Section 5.3 provide

the details of our data structures and algorithms respectively. Section 5.4 describes the

parallel scheme. In the end, Section 5.5 shows the experimental results.

5.1 Preliminaries

Before illustrating the details of our data structures and algorithms, the problem formu-

lation of detailed routing is introduced in this section.

5.1.1 Routing Space

VLSI Routing is on a stack of metal layers. A wire segment on a layer runs either

horizontally or vertically. Each layer has a preferred direction for routing, which benefits

manufacturability [80], routability and design rule checking [74]. The preferred directions

65

https://github.com/cuhk-eda/dr-cu
https://github.com/cuhk-eda/dr-cu

Chapter 5. Detailed Routing

M1

M2

M3

Figure 5.1: An example 3D detailed routing grid graph. Here, preferred directions of
metal 1 (M1) and M3 layers are both horizontal, while that of M2 is vertical.

of adjacent layers are perpendicular to each other in common design practice. Besides,

regularly-spaced tracks, where the majority of wires are routed on, can be predefined

according to the wire width and parallel-run spacing constraint. In this work, wrong-way

and off-track wires are considered only for short connections (especially to pins).

Wires on adjacent metal layers can be electrically connected by vias. A via is across

a cut layer, which is between the two metal layers. Note that for vias across a specific

cut layer, there may be several via types to be selected from. Different via types have

varied metal shapes (usually rectangles with various widths and heights) on the two metal

layers. The flexibility provides a way for resolving the spacing violations between vias

and obstacles.

The tracks on all metal layers define a 3D grid graph for detailed routing, as Fig-

ure 5.1 shows. On each track, there is a series of vertices. Note that a vertex is therefore

uniquely defined by a 3D index, which is a tuple of layer index, track index (in the non-

preferred direction), and relative index along the track (in the preferred direction). A

vertex connects downwards to the lower layer, upwards to the upper layer, or both. Adja-

cent vertices along a track are also connected. In this way, a same-layer edge represents a

possible on-track wire segment, while a cross-layer edge represents a possible via. In this

grid graph, an edge represents either a wire segment or a via.

Over the chip, there are some routing obstacles that vias and wire segments should

avoid to prevent short and spacing violations. In detailed routing, the relatively small

obstacles within standard cells (e.g., pins and intra-cell wires) should also be handled.

Assuming that a global routing result is already well optimized for certain metrics (e.g.,

timing, routability, power), a detailed router needs to honor the global routing result as

much as possible. The optimized metrics are thus kept with detailed design rules handled.

In this work, the 3D global routing result is referred as routing guide, and out-of-guide

routing (either wire or via) is penalized.

66

Chapter 5. Detailed Routing

𝒆𝒐𝒍𝑾𝒊𝒅𝒕𝒉

𝒆𝒐𝒍𝑺𝒑𝒂𝒄𝒆

𝒆𝒐𝒍𝑾𝒊𝒕𝒉𝒊𝒏

𝑬𝑶𝑳

Violation

region

(a) End-of-line (EOL)
spacing

𝒘𝒊𝒅𝒕𝒉𝟐

𝒘𝒊𝒅𝒕𝒉1

𝒔𝒑𝒂𝒄𝒊𝒏𝒈

𝒑𝒂𝒓𝒂𝒍𝒍𝒆𝒍𝑹𝒖𝒏𝑳𝒆𝒏𝒈𝒕𝒉

(b) Parallel-run spacing

Figure 5.2: Examples of spacing violations.

5.1.2 Design Rules

The most fundamental and representative design rules handled by detailed routing are as

follows [75].

� Short. A via metal or wire metal cannot overlap with another metal object like via

metal, wire metal, obstacle, or pin, except when the two metal objects belong to

the same net.

� End-of-line (EOL) spacing. A metal end is an EOL if its width is shorter than

eolWidth. EOL is required to preserve a spacing greater than or equal to eolSpace

beyond the EOL anywhere less than the eolWithin distance, as Figure 5.2(a) shows.

� Parallel-run spacing. For two metal objects with parallelRunLength (i.e., the projec-

tion length between them), there is a spacing requirement, as Figure 5.2(b) shows.

The value of parallel-run spacing rule depends on the widths of the two metal rect-

angles.

� Cut spacing. For vias across the same cut layer, their cut shapes in the cut layer

should be sufficiently far away from each other.

� Minimum area. The area of a metal polygon is required to be above a threshold.

5.1.3 Problem Formulation

The detailed routing problem can be formally defined as follows. Given a placed netlist,

routing guides, routing tracks, and design rules, route all the nets and minimize a weighted

sum of

� Total wirelength,

67

Chapter 5. Detailed Routing

routing region of a net routing topologylocal grid graph

global grid graph

record

edge

usage

maze

route

query
cache

Figure 5.3: Overview of the two-level grid graph data structures.

� Total via count,

� Non-preferred usage (including out-of-guide and off-track wires/vias, and wrong-way

wires), and

� Design rule violations (including short, spacing and minimum-area violations).

Note that design rule violations are highly discouraged and suffer much more significant

penalty than others.

5.2 Two-Level Sparse Data Structures

The grid graph for detailed routing is similar to that for global routing in structure, but is

significantly more fine-grained and thus has much a larger scale. To support the detailed

routing algorithms with both economic memory usage and efficient query, we design a set

of two-level data structures for the routing grid graph.

There are a global grid graph and local ones, as Figure 5.3 shows. The global grid

graph data structure stores the graph implicitly without instantiating all vertices. Here,

the information of routed edges are stored sparsely by balanced binary search trees (BSTs)

and intervals. The local grid graph, a local cache of the global one, is created for routing

a net. It is a sparse subgraph of the full-chip 3D grid graph on the routing region of a

net, where edge costs are readily available for conducting maze routing.

68

Chapter 5. Detailed Routing

5.2.1 Sparse Global Grid Graph

Edges of routed nets are called routed edges. Note that the an edge can be either a via

or a wire segment. The global grid graph stores routed edges in the sparse data structure

based on BSTs and intervals.

5.2.1.1 BST and Interval Based Storage

It is very expensive to use a full-chip 3D direct-address table for storing routed edges.

First, its size will be unaffordable (109 vertices for just 10 metal layers and 104 tracks on

each layer) [72]. Besides the time-consuming memory allocation and initialization, some

queries are also inefficient if using this data structure. For example, to record, query or

remove the usage of a wire segment (e.g., spanning 103 vertices), we need to change or

check all the 103 vertices on it.

Instead of a 3D direct-address table, we use a 2D table for the dimension of layers

and the dimension of tracks (i.e., the non-preferred direction), and use BST and intervals

in the third dimension (i.e., the preferred direction) for sparsity. For a track, there are

three balanced BSTs, two for storing routed vias and one for storing routed wires. For

vias, normal BSTs with indexes in the preferred direction being keys are used. Each via is

stored twice, one on the lower track and the other one on the upper track. The duplication

benefits the range searches that are needed on both the lower and upper tracks. This will

be illustrated in detail later. For wire segments, a BST with nodes representing non-

overlapping intervals is employed. In this way, the memory used is linear to the number

of wire segments instead of the number of vertices involved.

5.2.1.2 Conflicts with Obstacles and Pins

For obstacles and pins with irregular shapes, the vias and wires that may cause short or

spacing violations with them are marked in advance in batch. Since obstacles and pins

cannot be ripped up, the marking is a one-time effort. Note that a conflict with a pin

is net-dependent, because a via or wire is allowed to be close to a pin of the same net.

Therefore, some conflicts should be associated with some possibly excepted net(s).

Figure 5.4 shows an example of marking wires conflicted with obstacles and pins. For

each obstacle or pin, there are several vertices in the grid graph that will cause short or

spacing violations if a wire segment is routed through it. For an obstacle, the conflict

applies to all nets (red crosses in Figure 5.4(b) indicate conflicts without exception); for a

pin, the conflict applies to all nets but the net of the pin (yellow crosses in Figure 5.4(b)

indicate conflicts with exception). However, the conflicts between a wire and the pins

of different nets cannot be excepted. To save memory usage, we use an interval based

storage here as well. Only conflicted vertices are stored, while violation-free vertices are

69

Chapter 5. Detailed Routing

M1 track M2 track
Conflict w/

exception
Obstacle

Conflict w/o

exception
Pin

Pin of net A

Pin of

net B

Obstacle
Pin of

net C

(a) (b)

(c)

Figure 5.4: Wire-obstacle and wire-pin conflicts stored in global grid graph. (a) A region
with an obstacle and three pins. (b) Wires conflicted with obstacles/pins, where a wire-
pin conflict is excepted for the net of the pin, but wires conflicted with pins of different
nets have no exception. (c) Interval based storage.

implied. For continuous vertices with the same-type of conflict along a track, they will be

stored as an interval, as Figure 5.4(c) shows.

Via-obstacle and via-pin violations are more difficult to capture than wire-obstacle

and wire-pin violations, because there are several types of vias that can be chosen from.

Essentially, all via types need to be attempted. A via location should be penalized if and

only if all via types fail to satisfy the spacing requirement with its neighboring obstacles

or pins. Note that a via-pin conflict may be excepted for multiple nets due to the via

type selection.

When routing a net, the vias that will be considered for using are referred as candidate

vias. In the preliminary version [9] of this work, we simply store all the obstacles and

pins in R-trees [113] and later query the via-obstacle and via-pin violations from the R-

trees. For each candidate via of a net, its neighboring obstacles and pins are queried

from the R-trees and checked for possible violations. There is a big drawback with this

approach. A via may be treated as a candidate by many nets, resulting in repeated

queries and checking processes for a single via. The aforementioned pre-computation

scheme for conflicted vias can save runtime significantly, which will also be evidenced by

70

Chapter 5. Detailed Routing

Table 5.1: Statistics of Via-Obstacle and Via-Pin Conflicts on ispd18 test10

Layer

Metal layer information Cut layer information
obtacle/pin rectangles

Pre-
compute?

via locations

conflicted
intervals

conflicted
intervals
/ # vias

Obtacle Pin Total

Conflicted
(w/o

excepted
nets)

Conflicted
(w/ an

excepted
net)

Conflicted
(w/ multiple

excepted
nets)

Conflicted
(total)

Total
Conflicted

/ total

1 839912 2107724 2947636 Yes 41559185 11818934 9608 53387727 189000000 28.247% 16075707 8.506%
2 763422 0 763422 Yes 38375423 0 0 38375423 189000000 20.304% 585913 0.310%
3 24092 0 24092 Yes 11665650 0 0 11665650 189000000 6.172% 11248534 5.952%
4 580772 0 580772 Yes 7537450 0 0 7537450 189000000 3.988% 16040 0.008%
5 0 0 0 No - - - - - - - -
6 0 0 0 No - - - - - - - -
7 0 332 332 No - - - - - - - -
8 0 879 879 No - - - - - - - -
9 0 0 0 - - - - - - - - -

the experiments in Section 5.5.

Three techniques are crucial for enabling such speed-up. First, we only perform the

pre-computation for metal layers with huge numbers of obstacles and pins1. In our imple-

mentation, we set a lower bound threshold on the number of obstacle/pin metal rectangles

to 105. For many designs, it means a pre-computation for one or two layers. Second, we

store conflicted vias only, while violations-free vias are implied. The third technique is the

usage of BST and interval based storage scheme. The statistics in Table 5.1 provides some

evidence on the advantages of using these techniques. On ispd18 test10, metal layers

1, 2, and 4 have large numbers of obstacles and pins. Therefore, cut layers 1, 2, 3, and 4

need the pre-computation of via conflicts (cut layer i connects metal layers i and i + 1).

If storing the conflict situation for all via locations with direct-address tables, it means

GB scale memory usage for a single layer (note that we need to store the information of

excepted nets). Storing conflicted vias reduces the memory usage to 28.247% for cut layer

1. Using intervals further reduces the usage to 8.506%. For some layers, the reduction

can be even much larger (to 0.008%).

5.2.2 Global Grid Graph Query by Look-up Table

When routing a net, the edges that will be considered for using are referred as candidate

edges. Their costs (possibly penalized by the short/spacing violations) will be queried

from the global grid graph before running maze routing on a net.

Different from the conflict with obstacles, the conflict with routed edges will change

during the routing process and cannot be marked in advance. Considering various design

rules and a significant number of candidate edges, a proper scheme that can efficiently

query their costs is in need. We build several via/wire conflict LUTs to achieve that.

1We focus the discussion on metal layers for simplicity. In ISPD 2018 benchmarks, which we
use for the experiments, there is also no obstacle in cut layers. However, our method is generic
and can be easily extended for considering violations in cut layers.

71

Chapter 5. Detailed Routing

via-lower-wire conflict LUT

via-lower-via, via-upper-via,

via-upper-wire conflict LUTs …

M3 track

M4 track

M3 wire

M4 wire

routed via

candidate via

conflict

same-layer via-via conflict LUT

(a) Query a single candidate via

via-lower-via, via-upper-via,

via-lower-wire, via-upper-wire

conflict LUTs …

query region

routed via in

query region

candidate via

with violation

same-layer via-via conflict LUT

(b) Query a set of neighboring candidate vias

Figure 5.5: Query the violations on candidate vias due to the previously routed edges in
global grid graph.

5.2.2.1 Via/Wire Conflict Look-up Table

For routing a net, the metal short with routed edges can be trivially detected as inter-

val overlapping. For the following spacing violation conflicts, their identification is less

straight-forward:

� Via-via conflicts: for a specific via, it may conflict not only with vias on the same cut

layer (same-layer vias) but also with vias on the adjacent cut layers. The conflict

between same-layer vias may be due to spacing rules on either cut layer, metal

layers, or both. The conflict between different-layer vias is caused by metal spacing

requirement.

� Via-wire conflicts: a via may have spacing violations with wires on the lower and

the upper metal layers that it connects.

� Wire-wire conflicts: two wires may be too close to each other at their ends and

violate the spacing constraint.

72

Chapter 5. Detailed Routing

The above violations can be detected during routing. However, these detection operations

are extremely frequent and on-the-fly detections are too time-consuming. Since we are

working on a relatively regular grid graph, some light-weight LUTs can accelerate the

process. Conceptually, via/wire conflict LUTs immediately tells what neighboring edges

will conflict with a given edge. There are several types of them: when the given edge is

a via ei, a via-lower-wire conflict LUT tells what neighboring wire segments on the lower

metal layer of ei cause conflicts with ei; similarly, given a wire segment ej, a wire-upper-via

conflict LUT tells what vias connecting to the layer above ej may be conflicted with ej;

so on and so forth. Two conflict LUTs are called the inverse LUT to each other if the

types of the given edge and the neighboring edges are swapped. For example, the inverse

of a via-lower-wire LUT is a wire-upper-via LUT.

Regarding the indexing and sizes of conflict LUTs, we explain the via-via one as

an example. For two same-layer vias, their distance is unique for specific track index

differences in the lower metal layer and the upper metal layer, because of the equal

spacing of the tracks. Therefore, only one LUT is needed for each layer. Such an LUT

itself is 2D and is indexed by the track index differences. For two different-layer vias, three

consecutive metal layers are involved. Using their corresponding vertices on the middle

metal layer for indexing, their distance in the non-preferred direction is solely determined

by the difference in track indexes. However, in the preferred direction, vertices along a

track may have irregular spacing (e.g., M2 in Figure 5.1). As a result, a layer needs a series

of 2D LUTs, where each LUT serves for vertices with a specific index in the preferred

direction.

5.2.2.2 Single Edge Query

The cost of a candidate edge consists of a unit edge cost and some possible penalty caused

by two types of violations. The first type is violations with obstacles and pins, which has

been introduced in Section 5.2.1.2. The second type is violations with routed edges. The

via/wire conflict LUTs tell the neighboring edge positions that will have conflict with the

candidate edge. The only thing to do is to check whether the positions are occupied. An

example is shown by Figure 5.5(a). For the candidate via, a same-layer via-via conflict is

detected with the help of the corresponding LUT. Meanwhile, there is no via-lower-wire

conflict because no routed wire exists at the two potentially conflicting positions specified

by the LUT.

5.2.2.3 Batch/Long Edge Query

Usually, a set of neighboring edges (either vias or wire segments) along a track are all

candidate edges for routing a net. If querying them individually, O(k log n) time is needed

73

Chapter 5. Detailed Routing

with k being the number of candidate edges and n being the BST size2. A range search

on BST can improve the efficiency. Given a set of candidate edges along a track and the

corresponding LUTs, a query region where routed edges may have conflicts with can be

identified. By the range search on BSTs according to this query region and referring to

the inverse LUTs, the conflicted candidate edges can be found. An example on detecting

same-layer via-via conflict is illustrated by Figure 5.5(b). First, the query region and two

routed vias within it are identified. Starting from the two routed vias, the inverse LUT

(the same-layer via-via conflict LUT) finds five conflicted candidate vias.

Suppose the number of routed edges within the query region is m. The range search

on a BST takes O(m + log n) time, which can be conducted by finding the first and last

tree nodes within the range. Besides, m = O(k). Note that m can be significantly smaller

than k because a long routed wire segment is stored as a long interval instead of a bunch of

short edges in a BST. Therefore, the time for retrieving the routing cost of the k candidate

edges is O(k) + O(m + log n) = O(k + log n) instead of O(k log n). Moreover, the cost

of a long wire segment may be queried as a whole, then the time is further improved to

O(m+ log n).

In the batch query along a track, routed vias to both lower and upper layers should

be considered. As mentioned in Section 5.2.1.1, a via is stored twice on both its lower

and upper tracks. In this way, efficient BST range search along either track is enabled.

5.2.3 Sparse Local Grid Graph

The local grid graph of a net is the subgraph of the full-chip 3D grid graph within

its routing region (the routing guide with possibly minor expansion). In terms of data

structures, it caches the graph structure and all edge costs of the subgraph by direct-

address tables, supporting the maze routing.

Its sparsity is in two aspects. First, only the routing region is considered, which is

substantially smaller than the full-chip region. Second, many vertices become redundant

in this subgraph and are removed.

5.2.3.1 Routing Region

When routing a net, only the region around its routing guide is considered due to two

reasons. First, detailed routing should honor global routing solution, i.e., routing guides,

because many objectives (e.g., timing, routability) are optimized in global routing. For

some local congestions, global routing may not be able to model and resolve, so minor

out-of-guide routes may be necessary. However, such disturbance should be minimized.

Second, maze routing on the full-chip 3D grid graph will suffer from prohibitive runtime

2To be more rigorous, since multiple BSTs (for vias or wires, for different layers) may all
need to be queried, n represents the largest size of all BSTs.

74

Chapter 5. Detailed Routing

redundant vertex

(a) Before removing

(b) After removing

Figure 5.6: Long edges by removing redundant vertices.

due to its enormous scale. In our implementation, the routing region of a net is expanded

by a small margin from its routing guide. All out-of-guide edges are penalized. For

difficult-to-route nets, the expansion margin may be increased.

5.2.3.2 Long Edge

Conceptually, the local grid graph is simply a subgraph induced by vertices within the

routing region. However, many vertices in the subgraph have only two neighbors remained

and become redundant, as Figure 5.6(a) shows. In this snippet of the subgraph, many

vertices originally have neighbors on adjacent layers that are out of the routing region

now. They have thus only two neighbors left on the track. In this way, as long as such a

vertex does not belong to a pin, it can be safely removed with the two connected edges

merging into one. This compressing step cuts down the problem size without affecting

the final results. Both memory usage and runtime can be reduced.

5.2.3.3 Wrong-Way Edge

Wrong-way edges are discouraged due to three reasons. First, more regular designs with

fewer wrong-way usage is beneficial to manufacturability [80]. Second, a long wrong way

edge will block many tracks, which hurts routabiltiy. Third, for routing a single net, heavy

usage of wrong-way edges leads to a significantly larger solution space and thus runtime

overhead.

But it should be allowed. In the preliminary version [9] of this work, we only try using

wrong-way edges in some post processing steps. However, it turns out that adding some

wrong-way edges in the local grid graph can greatly benefit escaping congested tracks. In

our implementation, we add wrong-way edges densely in the small regions around pins.

75

Chapter 5. Detailed Routing

Besides, along two neighboring tracks, a wrong way edge is added for every ten vertices.

The improvement due to the wrong-way consideration will be shown in Section 5.5.

5.2.3.4 Explicit Storage

In the global grid graph, vertices are implied by 3D indexes but are not instantiated.

To support efficient vertex-wise operation in maze routing (e.g., recording the prefix and

cost, propagating to neighbors), the local graph instantiates all its vertices and edges.

To be more specific, vertices are assigned with continuous indexes staring from zero, and

adjacency lists are also created. In this way, any vertex/edge information can be efficiently

stored and retrieved by direct-address tables (instead of hash tables or BSTs).

5.3 Routing Algorithm

In routing (especially detailed routing), sequential maze routing is widely adopted due

to its scalability (compared with concurrent methods like [70, 71]) and flexibility (for

capturing various objectives and violations). Recall from Figure 5.3 that our local grid

graph is sparse because of the routing guide and long edges, which enhances the efficiency

of our maze routing. We follow the convention of sequential maze routing. Essentially,

nets are routed one after another, where previously routed nets are treated as blockages.

After routing all nets with possible violations, several rounds of RRR help to clean them

up.

5.3.1 Edge Cost in Local Grid Graph

The cost w(e) of each edge e in the local grid graph G(V,E,w) is a weighted sum of

� Basic wire cost (by length),

� Basic via cost (by count),

� Out-of-guide penalty, and

� Short/spacing violation penalty.

In this way, a path search (like Dijkstra’s algorithm [26]) running on the grid graph

will optimize these objectives automatically. The basic via/wire cost together with the

short/spacing violation penalties are queried from the sparse global grid graph in batch.

The out-of-guide penalty is charged according to the routing guide after the query.

Note that it is not determined by a single edge whether the minimum-area rule is

violated or not. The minimum-area violation thus cannot be reflected as expensive edges

like short/spacing violations and can only be captured by the path search algorithm.

76

Chapter 5. Detailed Routing

M1 track M2 track M1 wire M2 wire via

𝑺

𝑻

(a)

𝑺

𝑻

(b)

𝑺

𝑻

(c)

𝑺

𝑻

(d)

𝑺

𝑻

(e)

𝑺

𝑻

(f)

Figure 5.7: Capture minimum area cost in path search. Suppose the minimum area
implies a length of three pitches. A path from source S to sink T is needed. (a) A normal
path search without considering minimum-area violation. (b) Post fixing by extending
wire. (c) Forcing the minimum length of wire segment in path search. (d) Detour due to
the forcing. (e) & (f) Path search with wire extension considered.

5.3.2 Minimum-Area-Captured Path Search

For wires with a specific width, a minimum area implies a minimum-length constraint

lmin. A straight-forward idea for fixing the violation after maze routing is to extend the

wire segments that are not long enough. Such a greedy method may suffer from excessive

wirelength (e.g., Figure 5.7(b) compared with Figure 5.7(c)) and even insufficient spare

space for extension. Another method, multi-label path search [77], forces the minimum

length for every wire segment without considering the possibility of extension. In this

way, significant but unnecessary detour may be paid (Figure 5.7(d)). By capturing the

minimum-area violation and its possible fixing during the path search, a better solution

can be obtained (Figure 5.7(e)).

We extend the conventional Dijkstra’s algorithm [26] to comprehensively handle the

minimum-area rule. In Dijkstra’s algorithm, the cost/distance of a path can be directly

incremented. That is, the cost of a path from vertex v1 via v2 to v3 is simply the sum of

the cost of the two partial paths:

cost(v1 v2 v3) = cost(v1 v2) + cost(v2 v3).

77

Chapter 5. Detailed Routing

The challenge for considering the minimum area constraint is an uncertain cost of a partial

path, which is unknown until the path turns or stops. At vertex v2, it is unknown whether

a minimum-area overhead (either wire extension or violation penalty) is needed, which

depends on the future propagation of the path. However, for a path up to a certain wire

segment, bounds on its cost can be calculated as follows.

� Lower bound cost: sum of edge costs plus the minimum-area overhead on all the

previous wire segments.

� Upper bound cost: lower bound cost plus the potential minimum-area overhead on

the current wire segment.

Our path search is detailed by Algorithm 5.1. The process is still based on a priority

queue Q, but the operation domain is generalized from vertices to paths, because each

vertex may have several candidate paths now. The information stored for a partial path

P ′ includes:

� Prefix path P ′.prefix and current vertex P ′.vertex. Note that such incremental

storage requires O(1) memory only for each propagated path, instead of O(|P ′|)
with |P ′| being the number of vertices in P ′.

� The lower bound P ′.costLB and upper bound P ′.costUB of the path cost.

� Length of the current wire segment P ′.length. It is needed for calculating the

minimum-area overhead.

The information stored at each vertex v is the smallest upper bound cost v.costUB among

all the paths reaching it.

In each iteration, the path P ′ with the smallest lower bound cost in the priority

queue Q is popped out (line 6). It will be considered for propagating to the neighbors

of P ′.vertex. For an extended path P ′′ to a neighbor v ∈ P ′.vertex.neighbors, satisfying

P ′′.costLB < v.costUB means that P ′′ is a potentially optimal path and should be

considered for further propagation (line 25). If P ′′.costLB ≥ v.costUB, P ′′ can be pruned.

The algorithm stops when a sink vertex is reached (line 7). Note that for a sink vertex,

the pin metal is sufficiently large and thus can guarantee that P ′.costLB is achievable

(i.e., no minimum-area overhead charged).

The overhead due to the minimum-area rule depends on the length of the current

wire segment P ′′.length, whether vertex v has sufficient spare space for wire extension

78

Chapter 5. Detailed Routing

Algorithm 5.1 Optimal Minimum-Area-Captured Path Search

Require: A local grid graph G(V,E,w), source and sink vertices s and t, minimum length lmin
of wire segment (implied by the minimum-area constraint).

Ensure: s− t path P .
1: Q← an empty priority queue for storing paths
2: v.costUB ←∞,∀v ∈ V
3: Initialize path P ′ at s (P ′.prefix ← null, P ′.vertex ← s, P ′.costLB ← 0, P ′.costUB ← 0,
P ′.length← lmin)

4: Push P ′ into Q
5: while Q is not empty do
6: Pop the path P ′ with smallest P ′.costLB from Q
7: if P ′.vertex = t then
8: return P ′

9: end if
10: for v ∈ P ′.vertex.neighbors do
11: Relax(P ′, v)
12: end for
13: end while
14: function Relax(P ′, v) . Extend path P ′ to v
15: P ′′.prefix← P ′

16: P ′′.vertex← v
17: if P ′.vertex.layer 6= v.layer then
18: P ′′.costLB ← P ′.costUB + w(P ′.vertex, v)
19: P ′′.length← 0
20: else
21: P ′′.costLB ← P ′.costLB + w(P ′.vertex, v)
22: P ′′.length← P ′.length+ dist(P ′.vertex, v)
23: end if
24: P ′′.costUB ← P ′′.costLB+

[2] MinAreaOverhead(P ′′.length, v.hasSpace)
25: if P ′′.costLB < v.costUB then
26: Push P ′′ into Q
27: if P ′′.costUB < v.costUB then
28: v.costUB ← P ′′.costUB
29: end if
30: end if
31: end function

(v.hasSpace), and the minimum length requirement lmin (line 24). To be more specific,

MinAreaOverhead(P ′′.length, v.hasSpace) =
0, if P ′′.length ≥ lmin,

wwire · (lmin − P ′′.length), if P ′′.length < lmin and v.hasSpace,

wminArea, otherwise,

where wwire is the unit-length basic cost for wires, and wminArea is the penalty for each

minimum-area violation. Note that the flag v.hasSpace for all the vertices in the local

grid graph can be queried from the global grid graph in batch. The flags are then stored

79

Chapter 5. Detailed Routing

explicitly in the direct-address table mentioned in Section 5.2.3.4.

Theorem 5.1 states the optimality of Algorithm 5.1. The proof is similar to that of

the original Dijkstra’s Algorithm (see [13]).

Theorem 5.1. For a given local grid graph G(V,E,w), Algorithm 5.1 gives an optimal

s− t path P satisfying the minimum length constraint lmin.

The path search algorithm in MANA [76] also captures the minimum length constraint

in a similar manner. The strengths of our approach over MANA are two folds. First,

our framework allows minimum-area violations to exist in earlier RRR iterations. The

minimum-area penalty serves as Lagrange multiplier [61] and helps to build a smooth

RRR optimization process. It avoids satisfying minimum-area constraint at a huge price

of sacrificing other metrics (e.g., wirelength) in early iterations but still leads to almost

zero minimum-area violation eventually. Second, we query the flag v.hasSpace in batch

from our global grid graph, which is more efficient.

For a multiple-pin net, path search starts from a source pin s. When reaching the first

other pin, all vertices on the path are regarded as source for searching a next pin, until

all pins are reached [57].

5.3.3 Rip-up and Reroute

Our rip-up and reroute (RRR) strategy is similar to those widely used in global routing

(e.g., NCTU-GR [69]) with two major differences. First, only nets with violations are

ripped up to save runtime, considering that detailed routing is more time-consuming.

Second, for ripped-up nets, their routing regions will be slightly expanded for attempting

a larger solution space in the next iteration.

For the wires and vias with design rule violations in the current RRR iteration, a

history cost will be recorded. Note that for a wire segment with violations, history cost

is charged only for the intervals with violations on it. In this way, the actual situation of

resource competition can be reflected. Such a negotiation-based RRR results in a better

and faster convergence, as Section 5.5 will show.

5.4 Parallelism

Detailed routing is time-consuming in general. There are many jobs during the whole

process that can be easily parallelized. For example, the initialization of conflicted wires

and vias in the global grid graph can be conducted in parallel for different layers and dif-

ferent regions of a chip. However, the major runtime bottleneck of Dr. CU is to construct

the local grid graph, run maze routing, and update the global grid graph for each net.

The turn-around time of detailed routing can be further shortened by routing different

nets in parallel. The challenge here is that the routing regions of different nets may

80

Chapter 5. Detailed Routing

Algorithm 5.2 Scheduling for Parallel Routing

Require: Nets
Ensure: batchList
1: Sort all nets in decreasing size of routing region
2: batchList← ∅
3: for each net ni do
4: for each batch bj in batchList do
5: if ni has no conflict with bj then . By R-trees
6: Add n into bj
7: Break
8: end if
9: end for

10: if ni has not been assigned to any batch then
11: Append a single-net batch with ni to batchList
12: end if
13: end for
14: Reverse the order of batches in batchList
15: for each batch bj in batchList do
16: Sort nets in bj by decreasing size of routing region
17: end for

overlap. We design an efficient bulk synchronous parallel scheme [132]. It routes batches

of independent nets one after another. Note that such independence, together with a

deterministic scheduling of batches, can ensure deterministic routing results.

For nets in the same batch, their routing regions do not overlap. Here a safety margin

is also considered, which captures spacing rules and possible wire extension for minimum-

area compliance. There are two phases for each batch. The routing phase queries nets

from the global grid graph, constructs the local grid graphs, and runs maze routing; the

committing phase records routed edges into the global grid graph (see Figure 5.3), which

can be regarded as a data synchronization needed by later batches. The parallelism for the

independent jobs in either the routing or committing phase is trivial: each thread keeps

consuming a net from a pool of unprocessed nets until the pool becomes empty. With

runtime dominated by the routing phase, the reason for having a separate committing

phase is to avoid a heavy usage of mutual exclusion (mutex) [133] among threads. Routed

edges in the global grid graph are stored by BSTs. A BST cannot be accessed when it

is being modified by another thread, even if the ranges of access and modification do not

overlap. One solution is to set up locks. Its drawback is that reading BSTs is significantly

more frequent than writing. Note that for a net, reading BSTs is performed on its routing

region, while writing is only performed for the solution paths, which comprises just a

small part of the whole routing region. By separating the committing phase, the BST

read in the routing phase becomes lock-free and thus can be performed faster.

A scheduling of all the batches will be performed in the beginning of an RRR iteration

by Algorithm 5.2. Nets are assigned one after another by trying to join an existing batch

81

Chapter 5. Detailed Routing

(lines 4–9) and thus minimizing the number of batches. R-trees are used to detect the

conflict between a net and a candidate batch. For a batch of nets, there are several

R-trees storing their rectangular routing regions, one for each layer. In this way, the

scheduling is very efficient and empirically only takes 1.02–2.07% of the total running

time. Figure 5.8(a) shows the runtime profile of all the batches on a test case. Note that

in a batch, different threads may finish their last jobs at different time and thus have

various durations. The maximum duration of all the threads is the time that a batch

needs, while the average duration is the runtime lower bound that can be achieved by an

ideal scheduling. Their small difference shown in Figure 5.8 justifies the good quality of

our scheduling.

Moreover, we apply three techniques to further improve the effectiveness of scheduling.

The first two techniques are to enhance the load balancing.

� Within-batch balancing (WBB, Algorithm 5.2 lines 15–17). The workload of differ-

ent threads in a batch can be more balanced by processing larger nets first. The

improvement is evidenced by the smaller gaps between the maximum and the aver-

age durations of each batch in Figure 5.8(b).

� Inter-batch balancing (IBB, line 1). Attempting larger nets first during the schedul-

ing can improve the parallelism, as Figure 5.8(c) shows. The benefits are in three

folds. First, larger nets are more likely to have overlap with the existing nets in

a candidate batch. Therefore, IBB can help to reduce the number of batches by

increasing the success rate of larger nets (e.g., reduced from 123 to 96 for the first

RRR iteration on ispd18 test9). Second, our scheduling algorithm tends to

make later batches with fewer nets and thus worse load balancing among threads.

IBB remedies the problem by making later batches have fewer nets and by making

nets in later batches smaller. Third, some nets may be very huge and need a long

time to be routed. If the other nets in its batch do not take a sufficiently long time

in total, there will be a single thread routing the huge net with other threads idle

(seen by the long “pulse” in Figure 5.8(b)). IBB can gives more load to the batch

of huge nets (usually the first several batches) and avoid such an issue.

The third technique is batch with small nets first (BSF, line 14). IBB also lets large

nets be routed earlier. The problem is that small nets are less flexible in maze routing

than large nets due to their smaller solution space. Routing large nets first makes later

small nets even more difficult to be routed. BSF reverses the order of all batches and

avoids the problem. In terms of runtime, it leads to fewer nets with violations in a RRR

iteration, reroutes fewer nets in the next RRR iteration, and thus saves the runtime, which

can be seen from Figure 5.8(d).

The eventual runtime benefits of the three techniques will be shown in Section 5.5.

82

Chapter 5. Detailed Routing

0 50 100 150 200 250 300 350 400
Batch

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

D
ur

at
io

n
(s

)

RRR iteration 1 RRR iteration 2 RRR iteration 3 RRR iteration 4

max. duration
avg. duration
nets

0

5000

10000

15000

20000

#
 n

et
s

(a) None (routing phase 937s)

0 50 100 150 200 250 300 350 400
Batch

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

D
ur

at
io

n
(s

)

RRR iteration 1 RRR iteration 2 RRR iteration 3 RRR iteration 4

max. duration
avg. duration
nets

0

5000

10000

15000

20000

#
 n

et
s

(b) WBB (routing phase 906s)

0 50 100 150 200 250 300 350 400
Batch

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

D
ur

at
io

n
(s

)

RRR iteration 1 RRR iteration 2 RRR iteration 3 RRR iteration 4

max. duration
avg. duration
nets

0

5000

10000

15000

20000

#
 n

et
s

(c) WBB + IBB (routing phase 827s)

0 50 100 150 200 250 300 350 400
Batch

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

D
ur

at
io

n
(s

)

RRR iteration 1 RRR iteration 2 RRR iteration 3 RRR iteration 4

max. duration
avg. duration
nets

0

5000

10000

15000

20000

#
 n

et
s

(d) WBB + IBB + BSF (routing phase 749s)

Figure 5.8: Better parallelism by within-batch balancing (WBB), inter-batch balancing
(IBB), and batch with small nets first (BSF). The result is on ispd18 test9 and across
four RRR iterations.

83

Chapter 5. Detailed Routing

Table 5.2: Metric Weights in ISPD 2018 Contest Benchmarks

Metric Weight

Basic cost
wirelength 0.5

vias 2

Non-
preferred

usage

out-of-guide wirelength 1
out-of-guide vias 1
off-track wirelength 0.5

off-track vias 1
wrong-way wirelength 1

Design
rule

violations

short metal area 500
spacing violations 500

min-area violations 500

Table 5.3: ISPD 2018 Contest Benchmark Characteristics

Benchmark
std.
cells

block
macros

nets # pins
IO
pins

layers
M2

tracks
M2

pitch (µm)
Die size
(mm2)

test1 8879 0 3153 17203 0 9 977 0.2 0.20×0.19
test2 35913 0 36834 159201 1211 9 3254 0.2 0.65×0.57
test3 35973 4 36700 159703 1211 9 4943 0.2 0.99×0.70
test4 72094 0 72401 318245 1211 9 8886 0.1 0.89×0.61
test5 71954 0 72394 318195 1211 9 9800 0.1 0.93×0.92
test6 107919 0 107701 475541 1211 9 5312 0.1 0.86×0.53
test7 179865 16 179863 793289 1211 9 13500 0.1 1.36×1.33
test8 191987 16 179863 793289 1211 9 13500 0.1 1.36×1.33
test9 192911 0 178857 791761 1211 9 13500 0.1 0.91×0.78
test10 290386 0 182000 811761 1211 9 13500 0.1 0.91×0.87

5.5 Experimental Results

Dr. CU is implemented in C++ with the boost geometry library [134] for R-tree query and

Rsyn [135] as parser. Experiments are performed on a 64-bit Linux workstation with Intel

Xeon Silver 4114 CPU (2.20GHz, 40 cores) and 256GB memory. Benchmarks are from the

ISPD 2018 Initial Detailed Routing Contest [75]. The metric weights for the total quality

score and the benchmark characteristics are shown by Table 5.2 and Table 5.3 respectively.

Consistent with the contest, eight threads are used by default. The result reporting is

conducted by Cadence Innovus 17.1 [136] and the official evaluation script [137].

The result statistics of Dr. CU is illustrated by Table 5.4. Figure 5.9 shows a GUI

view of the solution on ispd18 test10.

5.5.1 Effectiveness of Quality Enhancement

Figure 5.10 shows the score breakdown of Dr. CU on ispd18 test9 and ispd18 test10

across the four RRR iterations. The score is calculated under the metric of ISPD 2018

Contest and divided into three categories – basic cost, non-preferred usage, and design

84

Chapter 5. Detailed Routing

Table 5.4: Comparison with State-of-the-Art Academic Detailed Routers on ISPD 2018
Contest Benchmarks

Basic cost Non-preferred usage Design rule violations ISPD’18
quality
score

Mem
(GB)

Time
(s)WLa # vias

Out-of-guide Off-track Wrong-way
WLa # short

Short
areaa

min
area

#
spacing

Total
#WLa # vias WLa # vias

D
r
.
C
U

test1 433254 32031 1706 446 393 0 4749 4 0.4 0 17 21 296504 0.33 11
test2 7806294 317160 34194 5948 4937 0 44495 12 1.3 0 73 85 4661740 1.70 85
test3 8683731 307545 52408 5499 5714 0 45541 346 372.5 0 161 507 5330014 1.75 113
test4 26033480 658644 132938 16103 9190 0 59579 463 436.8 6 1071 1540 15304156 3.94 320
test5 27729394 916715 92872 16686 1588 0 44680 406 77.4 10 496 912 16144832 5.42 426
test6 35595790 1403634 142595 25939 8735 0 69829 168 92.7 21 587 776 21198243 6.48 527
test7 64994186 2271738 235497 36269 16459 0 106884 772 230.8 38 325 1135 37724327 10.77 969
test8 65289434 2281513 290418 38596 17082 0 111173 861 249.5 20 399 1280 37990696 11.73 1034
test9 54602832 2282226 284645 42078 12746 0 108324 297 162.7 28 379 704 32592136 11.20 906
test10 67907614 2439531 1137257 64535 30527 0 197840 14605 11370.4 44 3910 18559 47909940 11.95 1299

Avg. ratio 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

[9
]

test1 434914 34443 4352 859 276 0 2363 127 15.3 0 122 249 362725 0.33 22
test2 7817285 339055 104720 11784 4353 0 22023 1005 1329.9 0 1949 2954 6366885 1.48 114
test3 8707641 331958 176736 10731 4344 0 22187 2444 1982.1 0 2419 4863 7430091 1.57 128
test4 26042785 701994 769265 31444 41791 0 89537 6914 26328.8 0 11224 18138 34112927 3.50 443
test5 27852167 942588 649224 43071 13390 0 63397 5466 4722.2 0 7742 13208 22805759 4.48 692
test6 35813473 1446807 976672 68656 20357 0 95811 7959 12891.0 0 11023 18982 33908650 6.35 1054
test7 65360688 2349580 2187794 101866 33105 0 170316 23141 33040.9 0 14880 38021 63816461 10.54 1848
test8 65668468 2360231 2288159 102982 33373 0 170583 20641 22352.8 0 14384 35025 58501486 10.62 1867
test9 54993356 2358857 1604576 115465 29620 0 168722 18830 17315.6 0 14470 33300 50010786 10.43 1804
test10 68282001 2532666 2826908 140343 32865 0 180586 26688 150704.9 0 20837 47525 128141528 11.10 1909

Avg. ratio 1.00 1.05 5.39 2.34 2.50 - 1.14 31.75 165.37 0.00 21.91 21.76 1.67 0.92 1.66

[8
6
]

test1 464503 39199 5659 1301 64 114 17 4364 1.1 0 120 4484 378304 4.43 101
test2 8097032 385111 63976 12746 2474 1241 172 29845 36.3 1 1419 31265 5626235 29.19 897
test3 9013950 389718 42336 691 19905 1117 205 34753 1507.2 0 1755 36508 6971806 38.45 1395
test4 27165618 847643 267804 50040 180535 1675 1016 42024 17088.6 54 3130 45208 25825193 52.44 6164
test5 29206112 1142635 278618 54613 20047 9905 1174 145826 1795.2 118 7438 153382 21918275 34.75 2317
test6 37905264 1768984 408860 80328 31165 16368 2765 152194 1937.0 188 11630 164012 29892011 35.89 3807
test7 68655629 2866477 677287 131394 93328 23387 4378 243375 9187.7 270 12896 256541 52120721 44.53 6561
test8 68988139 2879647 696911 135073 88394 23598 4506 238519 8386.2 240 12744 251503 51842741 44.98 6136
test9 58255989 2872574 620805 127167 51854 23438 4449 264230 2531.7 260 12581 277071 43361290 45.04 5737
test10 71637851 3055779 957064 138008 232529 27502 5610 340647 12162.8 259 16164 357070 57467840 47.21 12614

Avg. ratio 1.05 1.25 2.22 2.69 6.25 - 0.02 653.96 20.71 9.15 18.41 189.76 1.35 9.39 9.25

[8
7
]b

test1 487842 42565 1107 502 167 0 1724 95 4.4 0 773 868 721170 0.29 67
test2 8322145 403543 34068 5689 2783 0 17897 1218 172.0 0 6803 8021 8514694 1.93 1680
test3 9212616 398144 16211 5987 1920 0 16672 3919 1365.2 0 8477 12396 10363523 2.09 2194
test4 27699631 822662 56624 28601 4369 0 56093 5969 8273.2 126 45661 51756 42668733 4.78 7201
test5 29493060 1072812 130131 13385 15748 0 107889 7037 7681.5 37 96575 103649 69298177 5.46 10017
test6 38123660 1641879 190819 21811 30645 0 183006 10375 12213.7 48 113048 123471 85411399 7.75 16345
test7 69033346 2656802 453807 39365 52255 0 302204 19802 20961.3 108 179190 199100 140781447 13.11 51768
test8 69039670 2621050 468925 39302 53192 0 307267 20944 22601.7 103 182494 203541 143203359 13.53 51328
test9 58299612 2621857 336589 39504 46044 0 301241 19246 17949.0 74 185270 204590 136740361 13.39 45024
test10 71636304 2791064 523896 47663 60925 0 358457 35218 221528.4 55 218478 253751 262391463 14.21 71552

Avg. ratio 1.07 1.21 1.03 1.04 2.71 - 1.73 34.57 70.45 5.55 217.47 110.52 3.45 1.14 33.00

1
st

p
la

c
e

o
f

IS
P

D
2
0
1
8 test1 472032 41641 6246 1385 3528 116 3509 4223 0.7 0 107 4330 386190 5.66 100

test2 8150588 409551 71685 13451 20402 1362 18214 36601 94.9 1 1158 37760 5636272 29.91 831
test3 9086139 427410 69182 2450 33470 1216 18882 46966 4891.4 0 1387 48353 8645535 41.44 1408
test4 27514053 858224 240226 8841 150961 1011 224715 349597 52947.1 6 50957 400560 67978775 43.93 4374
test5 29415618 1158945 342675 31391 46870 10514 194054 431909 28428.7 28 66742 498679 65227110 23.02 1794
test6 38191983 1800286 471017 42714 151178 17549 281027 628776 31227.5 15 100196 728987 89303688 28.36 2969
test7 fail fail fail fail fail fail fail fail fail fail fail fail fail fail fail
test8 69559382 2929578 1006247 82478 375236 22294 455824 1058138 76790.0 48 161229 1219415 161426825 40.78 5030
test9 58803453 2920259 813750 67367 331766 22915 446432 1051112 56580.8 40 158305 1209457 144221468 40.16 4481
test10 72244024 3110163 1414338 81831 625291 27392 476670 1289359 120966.0 33 177426 1466818 193867712 43.42 5271

Avg. ratio 1.06 1.30 2.61 1.66 16.74 - 2.70 1628.84 175.34 1.52 138.97 582.42 3.28 9.90 7.60

a Unit of length is M2 pitch; unit of area is the square of M2 pitch.
b Two versions, with and without spacing-to-short conversion, are reported in [87]. The version without spacing-to-short conversion is shown

here because it is more practically meaningful.

rule violations. During the RRR process, even though the non-preferred usage (espe-

cially out-of-guide wirelength) may slightly increase, the design rule violations can be

significantly reduced. This demonstrates the effectiveness of our RRR scheme.

Figure 5.11 shows the enhancement due to three other techniques. First, adding some

wrong-way edges in the local grid graph (Section 5.2.3.3) helps to enlarge the solution

space and thus alleviate the congestion problem, which brings 7.7% score improvement

on average. Second, the minimum-area-captured path search (Section 5.3.2) provides

more correct-by-construction design rule satisfaction. To be more specific, it reduces the

number of minimum area violations by 82.6% and the total score by 0.93% on average.

Third, using history cost in RRR (Section 5.3.3) improves the quality score by 1.02%

eventually. Meanwhile, it also results in a faster convergence, reducing the total runtime

85

Chapter 5. Detailed Routing

Figure 5.9: Solution of Dr. CU on ispd18 test10.

0 5 10 15 20 25 30 35

4
3
2
1

Score (·106)

It
er

at
io

n

basic cost non-prefered usage design rule violations

(a) on ispd18 test9

0 5 10 15 20 25 30 35 40 45 50 55

4
3
2
1

Score (·106)

It
er

at
io

n

(b) on ispd18 test10

Figure 5.10: Improving routing quality by RRR.

by 6.8% on average.

5.5.2 Effectiveness of Runtime Reduction

Figure 5.12 shows the speed-up due to pre-computing via-obstacle and via-pin conflicts.

Here, the turn-around time of the whole detailed routing process is saved by 32%–63%.

The acceleration achieved by our parallelism is shown in Figure 5.13. Eight threads

give around five to six times speed-up compared with single-thread routing. Here, within-

batch balancing (WBB), inter-batch balancing (IBB), and batch with small nets first

(BSF) contribute 3.63%, 9.20%, and 6.65% improvement on average respectively. In

total, “WBB+IBB+BSF” reduces runtime by 18.5% on average.

Fig. 5.14 shows the runtime breakdown of Dr. CU on ispd18 test10. Before

86

Chapter 5. Detailed Routing

0 10 20 30 40 50 60 70 80

test10

test9

test8

test7

test6

test5

test4

test3

test2

test1

Score (·106)

w/o wrong-way edges

w/o min-area-captured path search

w/o RRR history cost
default

Figure 5.11: Improving routing quality by using wrong-way edges, minimum-area-
captured path search, and history cost.

0 500 1,000 1,500 2,000 2,500 3,000 3,500

test10
test9
test8
test7
test6
test5
test4
test3
test2
test1

Runtime (s)

w/o pre-compute

w/ pre-compute

Figure 5.12: Speed-up by pre-computing via-obstacle and via-pin conflicts.

routing, the global grid graph and conflict LUTs are initialized, which takes 4.9% of

the total runtime. We define the process of caching (including querying the global grid

graph and constructing local grid graphs) and maze routing as core routing, which is the

major consumer of runtime (38.4%+37.3%+3.7% = 79.4%). In each RRR iteration, core

routing is performed under our bulk synchronous parallel scheme, where there is a parallel

loss3. The miscellaneous jobs for routing including the committing phase mentioned in

Section 5.4, ripping up violated nets, updating history cost, etc. They take 12.9%. After

routing, we write the routing solution to the output file.

87

Chapter 5. Detailed Routing

0 1,000 2,000 3,000 4,000 5,000 6,000 7,000 8,000 9,000

test10

test9

test8

test7

test6

test5

test4

test3

test2

test1

Runtime (s)

1 thread

8 threads w/o

8 threads w/ WBB

8 threads w/ WBB+IBB

8 threads w/ WBB+IBB+BSF

Figure 5.13: Speed-up by parallelism.

4.9%38.4%

37.3% 3.7%

12.9%

2.8%

Before route

Core route: cache

Core route: maze route
Core route: parallel loss

Route misc.

After route

Figure 5.14: Runtime breakdown on ispd18 test10.

Pin

Obstacle

w
ir

e

Spacing violation

(a)

Pin

Obstacle

Short violation

with zero area

Patch

w
ir

e

(b)

Figure 5.15: Spacing-to-short conversion done by some other detailed routers. (a) A
spacing violation between a wire segment and an obstacle. (b) A metal patch that converts
the spacing violation to a short violation with zero area.

88

Chapter 5. Detailed Routing

5.5.3 Comparison with State-of-the-Art Detailed Routers

We also compare Dr. CU with TritonRoute [86], the work [87], and the first place in ISPD

2018 Contest (Table 5.4). For all the detailed routers, We run the binaries provided by

the authors on our machine with eight threads. Besides the ISPD 2018 Contest metric,

we also report the number of short violations. This is to avoid the misleading due to

the abusing of the contest metric. In the design rule verification of Innovus, a spacing

violation (e.g., Figure 5.15(a)) can be removed by inserting a metal patch between the

two violating objects (e.g., Figure 5.15(b)). The patch generates a short violation with

zero area, which improves the score under the contest metric but is not beneficial to the

real design need.

Regarding the routing quality, Dr. CU shows significantly better scores in many as-

pects (including wirelength, via count, out-of-guide usage, off-track usage, and design rule

violations) in most cases. According to the metric of ISPD 2018 Contest, our routing qual-

ity wins all the other state-of-the-art detailed routers in all test cases, as Figure 5.16(a)

summarizes. Regarding the number of design rule violations, our strength is even more

obvious (better by one or two orders of magnitude), as Figure 5.16(b) shows. At the same

time, the runtime of Dr. CU is also tremendously better than the others (Figure 5.16(c)).

3We divide the total CPU time for caching by the number of threads to get the equivalent wall
time for caching. Similarly, there is the equivalent wall time for maze routing. The parallel loss
of core routing is therefore the real wall time of while core routing process minus the equivalent
wall time for caching and maze routing.

89

Chapter 5. Detailed Routing

test1

test2

test3

test4

test5

test6

test7

test8

test9

test10

0

1

2

·108

S
co

re

Dr. CU

[9]

[86]

[87]

(a)

test1

test2

test3

test4

test5

test6

test7

test8

test9

test10

0

1

2

3

·105

#
v
io

la
ti

o
n

s

Dr. CU

[9]

[86]

[87]

(b)

test1

test2

test3

test4

test5

test6

test7

test8

test9

test10

0

2

4

6

·104

R
u

n
ti

m
e

(s
)

Dr. CU

[9]

[86]

[87]

(c)

Figure 5.16: Comparison with state-of-the-art detailed routers on (a) quality score under
the metric of ISPD 2018 Contest, (b) total number of design rule violations, and (c)
runtime.

90

Chapter 6

Bus Routing

The major challenge of bus routing is to maintain topology consistency. If processing bit

by bit (e.g. route bit 1, 2 and 3 sequentially as in Figure 6.1 (b)), the latter bits may lack

available track segments to be routed on especially when the routing track configuration

is non-uniform and complex. In the worst case, much effort of trial and error is needed

until finding a feasible topology.

In this chapter, we present an effective bus routing method named MARCH which can

efficiently solve this important problem handling practical issues like minimum spacing

and minimum wire width on metal layers with irregular track structures. The objective

is to finish routing all the buses, maintaining the same topology for different bits of a bus

while optimizing metrics like wirelength, wire segment number and compactness of the

buses. Our main contributions can be summarized as follows.

� We propose MARCH, which routes all the bits in a bus concurrently, instead of

processing bit after bit. Such concurrency directly captures topology consistency

constraint together with other objectives (e.g. wirelength) and constraints (e.g.

spacing) in a correct-by-construction manner.

� A hierarchical framework is designed for the efficiency of MARCH, consisting of

a Topology-Aware Path planning (TAP) and a Track Assignment for Bits (TAB).

TAP is efficient as it works on a coarse-grained solution space (see Figure 6.1 (c)).

TAB generates fine-grained routing solution, but it also gains efficiency by searching

on the regions provided by TAB only (see Figure 6.1 (d)).

� We present an effective rip-up and reroute scheme to further improve the routing

solution quality.

91

Chapter 6. Bus Routing

ObstaclePin M1 Track M2 Track

M1 TAP Region M2 TAP Region Wire

1

2

3 1

2

3

(a)

1

2

3 1

2

3

(b)

1

2

3 1

2

3

(c)

1

2

3 1

2

3

(d)

Figure 6.1: (a) A toy bus with two pins and three bits to be routed. (b) The bits
routed one by one. (c) The Topology-Aware Path planning (TAP) result. (d) The Track
Assignment for Bits (TAB) result.

6.1 Preliminaries

In the bus routing problem, buses may have multiple pins and have different wire width

constraints on different metal layers. In each layer, there are routing obstacles and non-

uniform routing tracks with different lengths and wire width constraints. An example is

shown in Figure 6.2.

6.1.1 Evaluation Metrics

The total cost Ctotal of a bus routing solution is the summation of the failure penalty cost

Cfail, the spacing penalty cost Cspace, and the routing cost Croute of all the buses.

Ctotal = Cfail + Cspace + Croute (6.1)

92

Chapter 6. Bus Routing

Figure 6.2: A bus with four pins and eight bits

Failure Penalty Cost A successfully routed bus has to satisfy the following require-

ments. The routing tree of a bit needs to connect all the pins of the bit. All wires should

be on-track and do not violate the width constraint of the track. More importantly, all

bits are routed with the same topology satisfying the following requirements.

1. All bits should have the same number of wire segments. In Figure 6.3 (a), bit 1 has

three wire segments, while bit 2 has only one.

2. Wires of different bits should go through the same sequence of layers. In Figure 6.3

(b), bit 1 goes through M2, M1, and M2, while bit 2 goes through M2, M3, and M2.

3. Wires of different bits should be routed towards the same directions. In Figure 6.3

(c), bit 1 is routed right, down, and right, while bit 2 is routed right, up, and right.

4. Within each segment of the topology, the bit order should either be the same as

or in reversed order of the bits at the pin locations. Note that on the layer with

horizontal tracks, the bit order is the order of the bits from bottom to top. It is

similar for the layer with vertical tracks. In Figure 6.3 (d), the bit order of the

middle wire segments is neither the same as nor in reversed order of the bits at the

pin locations.

Let Nfail denote the number of buses failed to be routed, then Cfail = wfail ·Nfail.

Spacing Penalty Cost Any pair of objects (e.g. wires of different bits, obstacles,

chip boundary, etc.) on the same layer should not violate their corresponding spacing

constraints. Let Nspace denote the number of spacing violations, then Cspace = wspace ·
Nspace.

93

Chapter 6. Bus Routing

2

1

2

1

(a)

1

1

2

2

M1

M2

M3

(b)

2

1
2

1

(c)

2

1

3

1

2

3

(d)

Figure 6.3: Four types of topology failures.

Routing Cost For successfully routed buses, the routing cost Croute can be computed

based on three normalized costs: wirelength cost Cb
wire, segment cost Cb

seg, and compact-

ness cost Cb
com:

Croute =
∑
bus b

wwire · Cb
wire + wseg · Cb

seg + wcom · Cb
com (6.2)

where Cb
wire is the average (among all the bits) of the total wirelength of a bit divided by

the half parameter wirelength of the bit, and Cb
seg is the segment number of the topology

divided by a lower bound [138]. Cb
com is the average (among all the wire segments) of

the segment width divided by a lower bound [138], where segment width is the distance

between the two outermost bits of the segment. A good routing solution should have short

wirelength, less segments in the topology, and more compacted width in each segment.

6.1.2 Problem Formulation

Problem 6.1 (Bus Routing). Given the pin information and width constraints of the

buses, the tracks and their width constraints on each layer, and the obstacles, connect all

the pins of each bit for all the buses and minimize the cost Ctotal.

6.2 Algorithms

The framework of MARCH consists of two levels of loops. The inner loop routes all the

buses (see the green box in Figure 6.4), and the outer loop is a Rip-up and Reroute (RR)

scheme that tries to find a better solution. During initialization, with the loaded infor-

mation of buses, tracks, and obstacles, a Bus-based Grid Graph (BGG) data structure,

which will be used during the whole procedure, will first be constructed.

In the inner loop, each bus will go through fours steps: Bus-based Grid Graph (BGG)

update, Topology-Aware Path planning (TAP), Track Assignment for Bits (TAB), and

track occupancy update. First, BGG will be updated according to the bus to be routed

so that it can provide accurate information of the routing resources meeting the width

94

Chapter 6. Bus Routing

Initialization

Bus-based Grid Graph (BGG) Update

Topology-aware Path Planning (TAP)

Evaluation & Best Solution Update

Need Rip-up and

Reroute (RR)?

Final Solution

Y

N

Obstacle

Info

Track

Info

Bus

Info

Track Assignment for Bits (TAB)

Track Occupancy Update

All Buses Routed?

Y

N

Figure 6.4: Overall flow of MARCH.

constraint of the bus. The pins of the bus will be marked on the BGG. The bits will then

be routed concurrently on BGG during TAP. In TAP, a row of grid graph cells (G-cells),

named frontline, will propagate from the source pins to the sink pins, generating a routing

path consisting of a set of rectangular regions (e.g. Figure 6.1 (c)) called TAP regions.

The TAP regions will be used to guide TAB later on.

To check spacing violations, each track maintains its track occupancy which records the

positions of the segments on the track that cannot be used because of the spacing violation

with some neighboring obstacles or routed wires. When one tries to use a certain part of a

track, an accurate number of spacing violations incurred can be obtained by checking the

track occupancy. The track occupancy is maintained by a binary search tree (BST) for

efficiency. After TAB, the track occupancies of all the tracks will be updated according

to the track segments used by the previously routed bus.

After routing all the buses, a routing solution will be generated. An evaluator then

computes Ctotal according to the metrics in Section 6.1.1. The best solution will be

updated if a lower Ctotal is found. The evaluator results will also determine whether a

RR process is needed. If so, history costs computed according to the detected spacing

95

Chapter 6. Bus Routing

Track

Occupied by Obstacle

Occupied by Routed Wire

Edge

V
er

ti
ca

l
L

o
ca

ti
o
n
s 250

200

150

100

50

e1 e2 e3

e5

e4

e6

Obstacle

Routed Wire

spacing constraint

t1

t2

t3

t4

t5

Figure 6.5: An example of computing edge capacity.

violations will be added to BGG, and the routing procedure will be restarted.

6.2.1 Bus-based Grid Graph (BGG)

BGG plays an important role in our algorithm since it provides the necessary information

for cost estimation during TAP. BGG is a multi-layer grid graph with uniform G-cells. In

each layer of BGG, there is an edge connecting adjacent G-cells along the layer’s routing

direction. The bits can be routed along the edge or switched to a neighboring G-cell on

adjacent layers by via.

Each edge stores its own edge capacity and history cost. The edge capacity is computed

during BGG update. It approximates the maximum number of tracks that meets the

width constraint of the bus to be routed and can be used concurrently without causing

any spacing violation. For instance in Figure 6.5, suppose the bus width is 10 and the

spacing constraint is 50. To obey the spacing constraint among different bits of the same

bus, neighboring tracks cannot be used concurrently for this example. Meanwhile, since

the track with the lowest index will be checked first, the tracks t1, t3, and t5 will be

used to compute the edge capacity of the BGG in this example. By checking the track

occupancies, the available segments on these tracks can be obtained (shown as dashed

lines Figure 6.5). The edge capacity of an edge in the BGG is then computed as the

number of available track segments with enough length to connect the two adjacent G-

cells. In Figure 6.5, for the edge e1, its edge capacity is 1 since only one available segment

from t5 has enough length to connect its two neighboring G-cells. The edge capacities of

edges (e1, e2, ..., e6) are (1, 2, 1, 0, 1, 0) respectively. For history cost, it can reflect the

degree of routing congestion in the edge and will be accumulated when the rip-up and

reroute process is performed.

96

Chapter 6. Bus Routing

F4

T2

F3

F2

F1

T1

P
in

 1

Pin 0

Figure 6.6: Result of topology-aware path planning (TAP).

6.2.2 Topology-Aware Path Planning (TAP)

In order to obtain a routable topology that all the bits can follow, TAP is needed to route

the bits concurrently. In TAP, the frontline, which is a row of G-cells, will concurrently

propagate to find a good path for all the bits. During initialization, the frontline sizes,

i.e. the number of G-cells contained, are determined. Note that each bus has different

frontline sizes on different layers because the track spacing on different layers varies. The

frontline size for a layer considers both the bit number of the bus and the average edge

capacity of that layer. The frontline sizes will all be computed at the beginning and can

only be changed during rip-up and reroute.

6.2.2.1 A Toy Example

In Figure 6.6, the bus has two pins and four bits. The BGG has two layers where the

frontline sizes of the bus are 3 and 2 respectively. The aim of TAP is to generate a ”path”

to connect Pin 0 marked at F1 and Pin 1 marked at F4. The path consists of a set of TAP

regions. It can be generated as follows. Starting from position F1, the frontline will go up

along the routing direction of the metal layer until reaching F2. At F2, the frontline will

switch to the adjacent layer and reach F3. Finally, the frontline will go right to reach the

destination F4. This path planner result consists of two connected TAP regions T1 and

T2, formed by propagating the frontline on the same layer.

6.2.2.2 Same Layer Propagation

When propagating the frontline on the same layer, it is necessary to know the number

of tracks that can be used currently. Thus, the frontline will maintain a set of values,

called running capacity, where each value corresponds to a G-cell in the frontline. When

propagating on the same layer, the values in the running capacity of the frontline will

97

Chapter 6. Bus Routing

decrease if the capacities of edges the frontline goes through are smaller. It is because

some tracks are broken midway, while the new ones will not be counted since the track

needs to run from the beginning to the end. For instance, at F1 of Figure 6.6, the running

capacity (from the left G-cell to the right) of the frontline is (2, 2, 3). Reaching F2, the

running capacity becomes (1, 2, 1). The feasibility of the propagation can be determined

by comparing the summation of the running capacity values with the bit number of the

bus. The running capacity of the last frontline in a TAP region is considered as the

running capacity of the TAP region. After switching layers, the running capacity will be

reinitialized.

6.2.2.3 Layer Switching

Switching layers is the process that the frontline goes from one layer to its upper layer or

lower layer which is usually of different routing direction. The main difficulty of switching

layer is to decide whether it is safe or not to switch, or in another word, whether it

will have enough routing resources without causing any spacing violation. Figure 6.7 (a)

denotes a simple switching node which is comprised of 4× 4 G-cells. In the following we

will always assume that the wires enter the node from below and leave from the right

without loss of generality, because other situations can be handled similarly. The number

on each edge denotes the edge capacity. Moreover, there are two ways of passing through

a switching node, one is passing with the bit order unchanged (Figure 6.7 (b)), and the

other is passing with the bit order flipped (Figure 6.7 (c)).

To decide whether passing through a switching node is safe or not, we have to compute

the maximum number of bits that can pass through a given node with bit order either

flipped or not. Take the node in Figure 6.7(a) as an example, the number of bits that can

pass through the node are very different for the flipping and not flipping cases. Keeping

the bit order unchanged, the node allows at most 5 bits to pass through (Figure 6.7 (b)),

whereas by flipping the bit order, up to 8 bits can be routed through the node (Figure 6.7

(c)).

We propose an efficient algorithm to compute the maximum bit number that can pass

through a given switching node for the two cases. For the case of keeping the bit order

unchanged, we start by routing the bits from the rightmost column, and continue to the

left one by one. Every time, we will use up all the resources on a lower row before using

the resources on an upper row. In this way, the maximum number of bits that can be

routed can be counted.

For the case of flipping the bits, the situation is a lot more complicated, since a bit

routed earlier may sometimes block the path of the bits to be routed later due to the

topology constraints. Therefore, the greedy approach used in the former case is no longer

applicable. For example, if we try to route through the node in Figure 6.7 (d) greedily

from the leftmost to the rightmost column, only 5 bits can be routed (Figure 6.7 (e)).

98

Chapter 6. Bus Routing

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

0 1 2 2

0 1 1 2

(a) A simple swithing node (b) Routing through the
node in (a) with bit order

unchanged

(c) Routing through the
node in (a) with flipped bit

order

2 2 2 2

2 2 2 2

0 2 2 2

1 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

2 2 2 2

(d) A switching node with a
bottleneck edge

0

(e) Routing through the
node in (d) with flipped bit

order greedily

0

(f) Routing through the
node in (d) with flipped bit
order by giving up one bit

Figure 6.7: A 4× 4 switching nodes.

However, if we give up 1 bit in the first column, we can end up routing 7 bits through

(Figure 6.7 (f)). Unfortunately, it is usually unknown sacrificing which bits would give

us better result before all the bits are routed, so both will be tried, and the better result

will be adopted.

Algorithm 6.1 demonstrates our methodology to compute the maximum switching

node capacity with flipped bit order. Assume that the columns are indexed 1, 2, ..., n

from left to right, and the rows are indexed 1, 2, ...,m from bottom to top. The function

NodeCapacityFlip(i, j) returns the maximum number of bits that can pass through the

node with flipped bit order and under the constraint that the bits can only enter the

columns with indexes larger than i, and leave from the rows with indexes larger than

j. Hence, NodeCapacityFlip(0, 0) will make use of the whole node, and returns the

desired result of the maximum layer switching capacity with flipped bit order. The time

complexity of the algorithm in the worst case is exponential. However, it can be finished

very efficiently for most of the cases, because the runtime is linear for a congestion-free

node, and will at most double when one bottleneck edge (Figure 6.7 (d)) exists in the

99

Chapter 6. Bus Routing

Algorithm 6.1 Compute m× n switching node capacity with flipped bit order

1: function GetFlippedCap(i, j)
2: if i ≥ n or j ≥ m then
3: return 0
4: end if
5: capacity ← max number of bits that can be routed from column i to row j
6: Record capacity change
7: if no more bits can enter column i then
8: return capacity + GetFlippedCap(i+ 1, j)
9: end if

10: if no more bits can exit row j then
11: return capacity + GetFlippedCap(i, j + 1)
12: end if
13: return capacity + max(GetFlippedCap(i+ 1, j), GetFlippedCap(i, j + 1))
14: end function

node. Empirically, very few nodes (less than 5%) contain such bottleneck edges. The

actual percentage depends highly on the sufficiency of the routing resources as indicated

by the BGG. Besides, the algorithm improves the overall runtime of TAP, because unsafe

nodes are pruned in an early stage and no longer explored.

After exiting the switching nodes, the running capacity of each G-cell in the frontline

will be reinitialized as the maximum number of bits that can exit from the G-cell for

subsequent propagation.

6.2.2.4 Cost Estimation

During TAP, the actual cost that will be induced is not known yet, but it is essential

to estimate the cost accurately in order to find a better path having potentially lower

actual cost. The estimated cost is the summation of three values: wirelength cost, seg-

ment count cost and spacing violation cost. Note that the compactness cost is not taken

into consideration, because our algorithm will always propagate with the most compact

frontline and will enlarge its size only when necessary.

The first two costs are fairly easy to estimate. Therefore, in the following we will

mainly focus on estimating the violation cost. We estimate the violation count based

on the changes of the total edge capacity of the edges that the frontline passes through.

More specifically, when the total edge capacity drops below the bit number of the bus,

the amount of the drop below the bit number will be accumulated as violation count. For

instance, consider a frontline with 4 G-cells moving from x1 to x7 as in Figure 6.8 (a),

the capacity change in the frontline is illustrated in Figure 6.8 (b). If the bit number of

the bus is 3, the total capacity drops below the bit number at x2, x5 and x6 respectively.

Consequently the estimated violation cost is calculated as (3− 1) + (3− 2) + (2− 1) = 4.

This approach can well avoid counting the same violation multiple times. Additionally,

100

Chapter 6. Bus Routing

1 0 0

0 0 0

0 0 0

1 1 1

1 1 1 1

1 0 0 1

1 0 0 1

1 0 0 1

x 1 x 2 x 3 x 4 x 5 x 6 x 7

(a) BGG edge capacities in a TAP
region

Frontline Position

T
o
ta

l
E

d
g

e
C

ap
ac

it
y

4

3

2

1

x 1 x 2 x 3 x 4 x 5 x 6 x 7

Bit number

(b) Total edge capacity change when
propagating from left to right

Figure 6.8: Spacing violation cost estimation.

the history cost will be added into the total cost at last.

6.2.3 Track Assignment for Bits (TAB)

TAB selects a track and also determines the exact positions on the track (called track

segment range) to be used for each bit. However, this is a chicken-and-egg problem. On

one hand, in a TAP region, the track segment range of a bit determines which track can

be selected. On the other hand, the track selections also determines the exact positions

on the tracks where the bits can be routed. For instance, the track selections of T1 and T2

determine the track segment ranges of each other in Figure 6.9. To handle this problem,

TAB is conducted in four steps: rough track selection, track segment range estimation,

exact track selection, and exact track segment range assignment.

Rough Track Selection First, the track for each bit is roughly selected by determining

the column/row of G-cells where the bit will be routed. To perform this rough track

selections for all the bits, a simple greedy method based on the running capacity of the

TAP region is adopted. Take T3 in Figure 6.9 as an example, assume that its running

capacity is (3, 3) (as explained in Section 6.2.2.2). The bits will be roughly routed,

following the bit order. Therefore, bits 1∼3 will be routed in the leftmost column of

G-cells, while bit 4 will be routed in the next column on the right. The rough track

selections in other TAP regions (e.g. T1 and T2) will be performed in the same way.

Track Segment Range Estimation For a TAP region, its estimated track selection

determines the track segment range estimations of its neighboring TAP regions (e.g. T1

and T3 affects T2). For example, for bit 2 in T2 of Figure 6.9, it needs to reach the middle

column of G-cells in T1 and the leftmost column in T3. Thus, its track segment range in

T2 can be estimated conservatively as shown by the red solid line in Figure 6.9.

101

Chapter 6. Bus Routing

T2

Estimated Track Segment Range

Actual Routed Wires Segment

Occupied by ObstacleObstacle on M2

bit 1

bit 2

bit 3

bit 4

t1
t2
t3
t4

t5

t6
t7

T3

T1

M1

M2

Figure 6.9: An example of track assignment for bits (TAB).

Exact Track Selection In each TAP region, with the estimated track segment ranges,

the track for each bit can be exactly selected. The track meeting the following three

requirements will be selected for the bit: (1) satisfying the width constraint of the bus,

(2) with long enough segment, and (3) without spacing violation.

The last two requirements are checked with the information of the estimated track

segment ranges. If a track cannot meet all the requirements for a bit, the next track

will be attempted. In a horizontal (vertical) TAP region, the tracks will be attempted

from bottom (left) to top (right). The track selection will follow the bit order. That is,

the track selection for a bit will start from the track next to the track selected for the

previous bit. For T2 in Figure 6.9, the track t1 will first be selected for bit 1 because it is

long enough and violation-free. For bit 2, t4 will be selected, instead of t2 and t3 because

of spacing violation. The other bits will then processed in the same way. Suppose the

spacing between each pair of tracks in T2 does not violate spacing constraint, the exact

track selection is shown in Figure 6.9.

Sometimes, there are not enough violation-free tracks in a TAP region, a violation

threshold will be set which is an upper bound on the number of spacing violations caused

by selecting a track. For each track, its track occupancy can give an accurate number of

spacing violations incurred. This violation threshold will be incremented gradually from

zero until finding an enough number of tracks.

Exact Track Segment Range Assignment After finishing exact track selections in

all the TAP regions, the track segment range for each bit can be decided. One can see

the actual routed wires segments in Figure 6.9.

102

Chapter 6. Bus Routing

Table 6.1: ICCAD 2018 Benchmark Statistics

Characteristics Metric Weights

buses # nets # layers # tracks wwire wseg wcom wspace wfail
beta1 34 1260 3 49209 5 1 5 8 2000
beta2 26 1262 3 49209 5 1 5 8 2000
beta3 60 665 3 22732 12 1 4 8 2000
beta4 62 698 3 22732 12 1 4 8 2000
beta5 6 1964 4 54150 8 1 5 8 2000
final1 18 1032 3 81226 10 1 5 10 2000
final2 70 1285 3 14209 10 1 5 10 2000
final3 47 852 4 21379 10 1 5 10 2000

6.2.4 Rip-up and Reroute Scheme

Rip-up and Reroute (RRR) is widely used in classic routing problems to negotiate between

different nets routed in congested regions. The RRR scheme in MARCH will do two things:

(1) Add history cost to the edge of BGG; (2) Enlarge the frontline size when violation-free

routing resources are not sufficient.

After the evaluation, the wire segments violating spacing constraints will be known.

The corresponding edges of BGG covered by these segments will be added a history cost.

The history cost of an edge is accumulated by this equation: hnew = α · nspace + β · hold
where nspace is the number of spacing violations on this edge, and α and β are weights.

When more iterations of RRR are executed, the congested regions on the BGG can be

eliminated gradually.

Recall that each bus has different frontline sizes for different layers. For a bus, when

the number of spacing violations in a TAP region of one layer is more than its bit number,

this layer will be marked. In the next RRR, if the same problem occurs, the frontline size

of the bus on that layer will be increased by one.

6.3 Experimental Results

We implement MARCH in C++. Experiments are performed on a 64-bit Linux worksta-

tion with Intel Xeon 3.4 GHz CPU and 32 GB memory. Benchmarks are from ICCAD

2018 Bus Routing Contest [138], the statistics of which is shown in Table 6.1. The runtime

limit of each case is 1 hour.

The detailed scores of MARCH are shown in Table 6.2. It can be observed that the

penalty cost Cfail + Cspace can be reduced to a level relatively smaller than the routing

cost Croute.

Table 6.3 shows the comparison with the winners of ICCAD 2018 Contest1. Compared

1The scores of top 3 teams of ICCAD 2018 Contest are provided by the contest organizer.
A binary is also obtained from the first place to get its runtime information.

103

Chapter 6. Bus Routing

Table 6.2: Detailed Results of MARCH

Cwire Cseg Ccom Croute Nspace Nfail Ctotal
Time
(s)

beta1 34 34 112 765 0 0 765 50
beta2 26 26 85 578 0 0 578 9
beta3 72 62 253 1942 0 0 1942 72
beta4 76 71 294 2165 0 0 2165 39
beta5 6 6 13 118 231 0 1966 12
final1 18 22 30 356 84 0 1196 352
final2 70 81 259 2071 148 0 3551 199
final3 47 51 558 3313 15 0 3463 133

* Cwire =
∑

bus bC
b
wire, Cseg =

∑
bus bC

b
seg, and Ccom =

∑
bus bC

b
com

with them, MARCH not only reduces spacing violations greatly but also gets rid of

all routing failures, achieving the best total cost Ctotal in seven out of eight cases. On

average, Ctotal of MARCH is 2.130, 3.731, and 7.832 times better than the first, second

and third places. At the same time, MARCH runs tremendously faster than the first

place (with 105× speed-up on average). This indicates the effectiveness and efficiency of

the concurrent and hierarchical scheme of MARCH.

104

Chapter 6. Bus Routing

Table 6.3: Comparison with Winners of ICCAD 2018 Contest

Croute Cspace Cfail Ctotal Time (s)

1
st

p
la

ce

beta1 689 280 0 969 3600
beta2 515 760 0 1275 3600
beta3 1936 0 0 1936 71
beta4 2192 0 0 2192 64
beta5 119 1848 0 1967 3600
final1 327 830 2000 3157 3317
final2 1824 4500 8000 14324 3600
final3 2966 490 10000 13456 3600

Avg. Ratio 2.130 105.45

2n
d

p
la

ce

beta1 701 5096 0 5797 -
beta2 563 4904 0 5467 -
beta3 2024 0 0 2024 -
beta4 2271 0 0 2271 -
beta5 95 616 2000 2711 -
final1 367 2750 2000 5117 -
final2 1890 2990 8000 12880 -
final3 2678 300 2000 4978 -

Avg. Ratio 3.731

3r
d

p
la

ce

beta1 641 8744 4000 13385 -
beta2 484 9472 2000 11956 -
beta3 1999 1928 0 3927 -
beta4 2250 1048 0 3298 -
beta5 98 1216 2000 3314 -
final1 252 0 10000 10252 -
final2 1976 6910 0 8886 -
final3 4238 20 24000 28258 -

Avg. Ratio 7.832

M
A

R
C

H

beta1 765 0 0 765 50
beta2 578 0 0 578 9
beta3 1942 0 0 1942 72
beta4 2165 0 0 2165 39
beta5 118 1848 0 1966 12
final1 356 840 0 1196 352
final2 2071 1480 0 3551 199
final3 3313 150 0 3463 133

Avg. Ratio 1.000 1.000

105

Chapter 7

3D IC Liquid Cooling Network

We propose novel thermal modeling and design optimization methodologies for liquid

cooling networks in realistic 3D ICs, in order to achieve better trade-offs among energy

efficiency, thermal gradient and peak temperature. Our major contributions are as follows.

� We develop a fast and accurate thermal modeling method for cooling networks.

� We propose some design guidelines and also a hierarchical tree-like cooling network

structure based on an extensive experimental exploration. We calculate the limit

of energy efficiency improvement under certain design constraints. This provides a

guidance as well as an evaluation for the design optimization.

� We develop a novel search scheme to obtain a desirable configuration for the tree-

like structure, under two problem formulations which minimizes pumping power and

thermal gradient respectively. The result of our method outperforms the first place

in the ICCAD 2015 Contest [139].

The rest of the chapter is organized as follows. Section 7.1 introduces the thermal

modeling methods for liquid cooling network in 3D ICs. Section 7.2 provides the detailed

problem formulations. Section 7.3 and Section 7.4 presents optimization methodology of

designing a cooling system. The experimental results are detailed in Section 7.5.

7.1 Thermal Modeling

While thermal modeling for convectional air cooling has been well investigated [140],

thermal modeling for liquid-cooled 3D ICs has recently received much attention [141–143],

which however all assume unidirectional straight channels. The latest work 3D-ICE [143]

is quite accurate, which has been validated by commercial computational fluid dynamics

simulator and a real liquid-cooled 3D IC. The ICCAD 2015 Contest [139] extends it for

flexible topology. Nevertheless, the extension only considers a 4-register model (4RM)

and is slow. Therefore, we construct a fast thermal simulator for cooling network based

106

Chapter 7. 3D IC Liquid Cooling Network

(a)

 Inlet

Outlet

(b)

(c)

Figure 7.1: (a) Discretized channel layer where a basic cell either is TSV (black) or may
be used for microchannels (white). (b) A cooling network. (c) Pressure and flow rate
distribution where longer arrows represent larger flow rates and darker liquid cells have
higher pressures.

on a 2-register model (2RM), which enables simulation in the inner loops of the design

flow.

Before discussing details of our 2RM method, some preliminaries and 4RM method

are briefly introduced.

7.1.1 Preliminaries

For a liquid cooling system, there are two variables: (1) cooling network N , including its

topology and positions of inlets and outlets; (2) system pressure drop Psys across inlets

and outlets.

To represent N , we divide the channel layer into discrete basic cells with a 2D rect-

angular grid, assign solid/liquid properties to each basic cell, and designate the boundary

liquid cells as inlets/outlets. An inlet or outlet is defined as the surface where the coolant

flows into or out of the corresponding liquid cell. Besides, some basic cells are reserved

for TSVs and thus not allowed to be liquid, as Figures 7.1(a) and 7.1(b) show.

7.1.2 Pressure and Flow Rate

To calculate the heat transfer caused by the flowing coolant, local flow rates should be

known. Their relationship with Psys here is not as trivial as that in straight-channel

design. The following calculation is among liquid cells (with a number of n), inlets and

outlets.

For fully developed laminar flow, the volumetric flow rate Qi,j from liquid cell i to its

neighbor j is [144]:

Qi,j = gfluid,i,j · (Pi − Pj), (7.1)

107

Chapter 7. 3D IC Liquid Cooling Network

where Pi and Pj are pressures at i and j respectively, and gfluid,i,j is the fluid conductance

computed as gfluid,i,j = (D2
hAc)/(32li,jµ). Here, li,j is the distance between centers of i

and j, µ is the coolant dynamic viscosity, Ac is the cross-sectional area, and Dh is the

hydraulic diameter computed as Dh = 2wchc/(wc + hc) with wc and hc being the width

and height of the channel. Besides, the flow rate at an inlet/outlet of cell i is calculated

similarly with a smaller fluid conductance gfluid,i,edge.

By assuming constant water density, there is volume conservation for cell i:∑
j∈Ni

Qi,j = 0, (7.2)

where Ni is the set of neighboring cells and possible neighboring inlet/outlet of i.

For convenience, the pressure at the outlet Pout is put as zero, so pressure value at the

inlet Pin is Psys. Then, substituting (7.1) into (7.2) creates the following system of linear

equations:

G · P = Qin, (7.3)

where P ∈ Rn is the vector of all liquid cell pressures, Qin ∈ Rn is the vector about flow

rates at inlets ((Qin)i = gfluid,i,edgePin, if cell i neighbors an inlet; otherwise, (Qin)i = 0),

and G ∈ Rn×n is the conductance matrix:

Gi,j =

∑

k∈Ni
gfluid,i,k, j = i,

−gfluid,i,j, j ∈ Ni,

0, otherwise.

(7.4)

Since G and Qin are known, the pressure vector P can be solved. Local flow rates are

then attained by (7.1). An example is in Figure 7.1(c).

7.1.3 4RM-Based Thermal Modeling

To model liquid cooling, heat transfer inside microchannels is incorporated into a lumped

thermal resistance network. 4-register-model (4RM) based modeling [143] follows the

microchannel geometry, where thermal cells are formed according to both the 2D grid

defining basic cells and the stack layer division. Each thermal cell is then represented by

its center as a node. There are totally three kinds of heat transfer: between solid and solid,

between solid and liquid, and between liquid and liquid (shown as Figure 7.2). Calculation

of solid-solid and solid-liquid heat transfer can be derived from 3D-ICE directly. For

the liquid-liquid one, a liquid cell now may couple with two or more liquid cells due to

branches, requiring a new modeling technique.

108

Chapter 7. 3D IC Liquid Cooling Network

solid-solid
heat transfer

liquid-liquid
heat transfer

solid-liquid
heat transfer

=

 𝑔𝑠𝑙
∗

 𝑔𝑠𝑙

 𝑔𝑠𝑠
∗

Figure 7.2: 4RM model with three kinds of heat transfer.

The thermal conductance between two neighboring solid nodes i and j is:

gss =
qi,j

Ti − Tj
=
ksolid · Ai,j

li,j
, (7.5)

where qi,j is the heat transfer from i to j, Ti and Tj are their temperatures, ksolid is the

thermal conductivity of the solid material, and Ai,j is the cross-sectional area, and li,j is

the distance between their centers.

There are two parts for the thermal conductance gsl between a solid node i and its

liquid neighbor j, the conductance g∗ss from i to the channel wall, and the conductance

g∗sl from the channel wall to j:

gsl =
qi,j

Ti − Tj
= g∗sl ‖ g∗ss =

g∗sl · g∗ss
g∗sl + g∗ss

, (7.6)

where g∗ss is still calculated from (7.5), while g∗sl is derived by g∗sl = (kliquidAi,jNu)/Dh

with kliquid and Nu being the coolant thermal conductivity and Nusselt number [145]

obtained by correlations.

For liquid-liquid heat transfer, a liquid cell receives thermal energy from upstream

cells and send some energy to downstream cells. The net energy received by cell i is

qll = Cv ·
∑

j∈Ni
(Qj,i · T ∗j,i), where Cv is the volumetric specific heat of the coolant, and

T ∗j,i represents the temperature at the corresponding boundary. The boundary is either

inlet/outlet or the interface between two liquid cells. The temperature at inlet T ∗in,i(= Tin)

is constant; that at outlet T ∗out,i can be approximated by Ti; that at the interface between

two cells T ∗j,i = (Tj + Ti)/2 under the central differencing scheme. Then together with

(7.2), there is

qll =
Cv
2
·
∑

j∈Ni

(Qj,i · Tj). (7.7)

Combining energy conservation for each cell, (7.5), (7.6) and (7.7), a system of linear

equations similar to (7.3) can be created. Temperatures of all thermal cells are then solved

from it.

109

Chapter 7. 3D IC Liquid Cooling Network

a solid thermal

node consisting

of several solid

basic cells

solid node 𝑖

 𝑔𝑠𝑠 ,𝑖 ,𝑗

∗ a liquid thermal

node consisting

of several liquid

basic cells

effective region

for 𝑔𝑠𝑠 ,𝑖 ,𝑗
∗

effective region

for 𝑔𝑠𝑠 ,𝑗 ,𝑖
∗

solid node 𝑗

 𝑔𝑠𝑠 ,𝑗 ,𝑖
∗

Figure 7.3: 2RM model with discretization of 4× 4 basic cells.

7.1.4 Faster 2RM-Based Thermal Modeling

As Section 7.5 will show, 4RM simulation is quite slow. For a three-die stack, it takes as

much as 16 seconds to finish a simulation. This may be acceptable for final evaluation,

but is forbidding for simulation inside the design flow, where the simulator usually needs

to be invoked repeatedly. Therefore, we propose a simulation method in this section,

which can be tremendously faster with limited accuracy loss.

Actually, it is not difficult to understand why 4RM simulation is slow, since it requires

thermal cells to conform to the microchannel geometry. Freed from this constraint in

the horizontal 2D discretization, thermal cells can be larger and thus fewer, accelerating

the simulation. In [98,143], the porous-medium approach (a.k.a. 2-register-model (2RM)

based modeling) has applied the idea to straight microchannels. It is also applicable to

general cooling network. The resulted speedup is necessary because the simulator usually

needs to be invoked many times for designing a cooling system.

In 2RM, the horizontal 2D discretization is therefore coarser than basic cells. Fig-

ure 7.3 shows an example with a grid size of m ×m (m = 4) basic cells. In the channel

layer, basic cells in each grid are treated as two thermal nodes, a solid one and a liquid one,

because of their diverse thermal properties and temperatures. In solid layers, a thermal

node represents exactly m×m basic cells.

For the solid-solid heat transfer, the core calculation is still (7.5), but the corresponding

geometry is no longer a simple cuboid. Take solid thermal nodes i and j in Figure 7.3 as

an example. If node j represents a pure solid region, its effective region for calculating

the thermal conductance with node i will be the upper half of the 4× 4 grid. Now among

the distributed solid basic cells, only complete conducting paths are taken into account.

In this way, g∗ss,j,i, the thermal conductance between node j and the interface, is obtained.

Similarly, there is g∗ss,i,j. The total conductance between nodes i and j is then computed

110

Chapter 7. 3D IC Liquid Cooling Network

as:

gss,i,j = g∗ss,i,j ‖ g∗ss,j,i =
g∗ss,i,j · g∗ss,j,i
g∗ss,i,j + g∗ss,j,i

. (7.8)

The above example is for a neighboring solid node pair in the same layer, but the

approach is also applicable to a cross-layer pair (a solid node in the channel layer and its

top/bottom node in solid layers).

For the solid-liquid heat transfer, both the vertical heat transfer (from top/bottom

walls to the coolant) and the horizontal one (from side walls to the coolant) are considered

only in the vertical direction [143]. That is, the thermal conductance between a liquid

node and its side wall g∗sl,side = 0. The side wall area Aside is added into the calculation of

vertical heat transfer. The thermal conductance between a liquid node and its top/bottom

wall is thus:

g∗sl,top/bottom = hconv · (Atop/bottom + Aside/2), (7.9)

where Atop/bottom is its top/bottom wall area. The total solid-liquid conductance is then

derived by (7.6).

The liquid-liquid heat transfer depends on flow rates between liquid thermal nodes.

With possible multiple microchannel connections, total heat transfer is determined by the

net flow rate and (7.7).

Similar to 4RM, we then obtain temperatures from a system of linear equations. In

general, an m×m discretization reduces the problem size to 1
m2 of the 4RM one, and thus

accelerates more than m2 times (note that the exact value depends on the linear algebra

(LA) solver used). Note that though only steady thermal analysis is discussed above, it

can be easily extended to transient one.

7.2 Problem Formulations

By Bernoulli’s equation, pumping power Wpump = PsysQsys/η with Psys being the system

pressure drop and Qsys being the system flow rate. There is an efficiency term η because

energy loss across components such as tubes, heat exchangers and pumps. However, η

depends on the parts outside the cooling network and has no impact on the optimization

procedure, so it will be removed from the upcoming calculation of Wpump. Thermal

gradient is defined as ∆T = maxi(∆Ti) with ∆Ti being the range of node temperatures

in the i-th source layer [139]. Peak temperature Tmax is the maximum of the thermal

node temperatures. Note that Tmax can only occur in the source layer due to energy

conservation.

Besides, the following design rules are used to make the problem concrete and realistic:

� TSV positions are assumed to be at alternating basic cells in both dimensions, like

Figure 7.1(b).

111

Chapter 7. 3D IC Liquid Cooling Network

� Inlets and outlets can only occur at the edges of the channel layer.

� To reduce the complexity of packaging, there can be at most one “continuous” inlet

and outlet on each side.

In fact, without the last rule, straight channels with alternating directions can compensate

temperature rise from inlets to outlets of each other very well. However, it is unpractical

for packaging.

Based on the above design rules, we present two problem formulations for trade-

off among Wpump, ∆T and Tmax. The first problem formulation is from ICCAD 2015

Contest [139], where Wpump should be minimized:

Problem 7.1 (Pumping Power Minimization). Given the heat dissipation of a 3D IC

and some design rules, decide the cooling network and the system pressure drop of the

cooling system, such that the pumping power is minimized, while the constraints on peak

temperature and thermal gradient are satisfied.

Liquid cooling causes large ∆T , bringing reliability issues and timing errors. Therefore,

a second formulation treating it as the objective will also be discussed:

Problem 7.2 (Thermal Gradient Minimization). Given the heat dissipation of a 3D IC

and some design rules, decide the cooling network and the system pressure drop of the

cooling system, such that the thermal gradient is minimized, while the constraints on peak

temperature and pumping power are satisfied.

7.2.1 General Considerations

Among the three targets (i.e., Wpump, ∆T and Tmax), we should take more care of ∆T . It is

due to the following two reasons. First, for a specific cooling network N , increasing Wpump

(i.e. flow rates) will lower Tmax, and vice versa, which is a simple trade-off between them.

However, increasing Wpump will not necessarily lead to lower ∆T . Second, with liquid

cooling, Tmax is decreased already, while ∆T is higher when comparing with convectional

heat sinks as mentioned in Section 2.2.5.

For ∆T , there are three inducing factors:

1. With a practical flow rate, temperature rise of the coolant will create uneven heat-

sinking from inlet to outlet.

2. The power source distribution in active layers is probably non-uniform, making

temperatures in different regions tend to differ.

3. For non-uniform channel distribution, some regions have less contact area with the

coolant or are even far from the channel, which also creates uneven heat-sinking

112

Chapter 7. 3D IC Liquid Cooling Network

Algorithm 7.1 Optimization Flow for Pumping Power Minimization

Require: Ninit, ∆T ∗, T ∗max, stack description and floorplan files.
Ensure: N , Psys.

1: N ←Ninit

2: while # iteration is within the limit do
3: Obtain neighboring network solution N ′;
4: Get the score W ′

pump of N ′; . Algorithm 7.2
5: N ←N ′ or not according to SA mechanism;
6: if W ′

pump converges then return N and Psys;
7: end if
8: end while

Among them, the first two are unavoidable, but factor 3 can be used to compensate for

them. For example, in a region with higher power source (factor 2), more channels can

be assigned to achieve stronger heat-sinking (factor 3).

7.3 Minimizing Pumping Power

The ideas and technical details for solving pumping power minimization are introduced

in this section. The extension to thermal gradient minimization will be explained in the

next section.

First of all, the mathematical formulation for Problem 7.1 can be written as follows:

min Wpump,

s.t. Psys ∈ R+, N ∈ N , Tmax ≤ T ∗max, ∆T ≤ ∆T ∗,
(7.10)

where N is the set of all legal cooling networks, ∆T ∗ and T ∗max are the corresponding

constraints.

The overall two-level optimization framework for (7.10) is shown in Algorithm 7.1.

As mentioned in Section 7.1.1, there are two variables in each solution, i.e., the cooling

network N and system pressure drop Psys. For each solution, not only the cost function

Wpump but also the constraints on ∆T and Tmax need to be checked. We thus handle the

problem in two levels according . In the inner level, Psys is varied to minimize Wpump for

a specific N , which evaluates N by its lowest feasible pumping power W ′
pump (line 4). In

the outer level, simulated annealing (SA) searches for a good N solution according to

W ′
pump.

Before introducing the inner level (Section 7.3.2) and the outer level (Section 7.3.4),

the relationship between Psys and thermal profile is introduce first.

113

Chapter 7. 3D IC Liquid Cooling Network

10
4

10
6

0

200

400

600

800

P
sys

 (Pa)

T
e
m

p
e
ra

tu
re

 (
K

)

thermal node 1

thermal node 2

(a) Temperatures in a network.

10
4

10
6

0

200

400

600

800

P
sys

 (Pa)

T
em

pe
ra

tu
re

 (
K

)

T

max

∆ T

(b) Tmax and ∆T of (a).

10
4

10
6

0

200

400

600

800

P
sys

 (Pa)

T
e

m
p

e
ra

tu
re

 (
K

)

thermal node 1

thermal node 2

(c) Temperatures in another network.

10
4

10
6

0

200

400

600

800

P
sys

 (Pa)

T
em

pe
ra

tu
re

 (
K

)

T

max

∆ T

(d) Tmax and ∆T of (c).

Figure 7.4: Relation between temperatures and Psys in a network.

7.3.1 Relationship Between Pressure and Temperature

In general, as Psys increases, temperatures of all thermal cells will decrease. When Psys

becomes sufficiently large, coolant temperature will be very close to Tin and approximately

constant, making the temperatures of its neighboring solid cells also almost constant.

Prior to this sufficiently large Psys, temperature decrease is gradually smaller and becomes

almost zero. We call it a turning point, as Figures 7.4(a) and 7.4(c) show. For different

cells, turning points are different. More specifically, the temperatures of the upstream

liquid cells are closer to Tin than those of the downstream ones. Hence, upstream regions

reach turning points earlier.

Suppose Tmax = h(Psys) and ∆T = f(Psys). Since Tmax is the maximum among

node temperatures, h also decreases monotonically and finally becomes approximately

constant, as Psys increases. For ∆T , if thermal cells with later turning points become

cooler than those with earlier turning points (e.g., Figure 7.4(a)), ∆T will begin rising

at certain Psys, as Figure 7.4(b) shows. Otherwise (e.g., Figure 7.4(c)), ∆T will keep

dropping, as Figure 7.4(d) shows. Note that, in both cases, when Psys is very large and

all the nodes reach their turning points, ∆T becomes approximately constant. In short,

f is either uni-modal (with minimum) or monotonically decreasing. The correctness of

114

Chapter 7. 3D IC Liquid Cooling Network

Algorithm 7.2 Network Evaluation for Pumping Power Minimization

Require: N , ∆T ∗, T ∗max.
Ensure: W ′pump.
1: Solve (7.12); . Algorithm 7.3
2: if ∆T > ∆T ∗ then return +∞;
3: else if Tmax > T ∗max then
4: Minimize Psys, s.t. Tmax ≤ T ∗max;
5: if ∆T > ∆T ∗ or Tmax > T ∗max then return +∞;
6: end if
7: end if
8: return W ′pump corresponding to Psys ;

this analysis has been verified by extensive experiments.

7.3.2 Network Evaluation

A network N is evaluated by a lowest feasible pumping power W ′
pump. For a specific N ,

the relationship between Wpump and Psys is monotonic:

Wpump = Psys ·Qsys = P 2
sys/Rsys, (7.11)

where, Rsys is the system fluid resistance determined by N . In this way, optimizing Wpump

is equivalent to optimizing Psys.

Based on the knowledge in Section 7.3.1, Psys is minimized for a specific N in two steps

(Algorithm 7.2). In the first step, the problem without constraint ∆T ∗ on ∆T is solved.

By replacing Wpump with Psys, ignoring T ∗max temporarily and substituting ∆T = f(Psys)

in (7.10), the mathematical formulation is single-variable:

min Psys,

s.t. Psys ∈ R+, f(Psys) ≤ ∆T ∗.
(7.12)

Solving (7.12) is still difficult because: (1) f comes from numerical simulation so analytical

method is not suitable; (2) f may not be monotonic; (3) probing f once is time-consuming.

Thus, Algorithm 7.3 is carefully designed to achieve accuracy and speed, based on the

analysis about f in Section 7.3.1. If a feasible Psys exists (e.g., ∆T ∗ = ∆T ∗1 in Figure 7.5),

it returns the optimal Psys (i.e., P ∗1); otherwise (e.g., ∆T ∗ = ∆T ∗2), it returns the Psys for

minimum f (i.e., P ∗2), which in fact shows the nonexistence of a feasible Psys.

The general idea of Algorithm 7.3 is moving three probing points of Psys to search for

the smaller Psys for f(Psys) = ∆T ∗ (line 19) or minimum f (line 10 and line 15). The

initialization step (lines 1–6) makes sure that f(P0) > ∆T ∗ and f(P0) > f(P1), where

Pinit is the initial pressure and rinit is the initial step ratio.

In the second step (Algorithm 7.2 line 4), if T ∗max is violated, another binary search is

115

Chapter 7. 3D IC Liquid Cooling Network

10
2

10
4

10
6

10
8

10
0

10
1

10
2

10
3

∆𝑇 (𝐾)

𝑃𝑠𝑦𝑠 (𝑃𝑎)

∆𝑇1
∗

∆𝑇2
∗

𝑃1
∗ 𝑃2

∗

(a)

10
2

10
4

10
6

10
8

10
0

10
1

10
2

10
3

∆𝑇 (𝐾)

𝑃𝑠𝑦𝑠 (𝑃𝑎)

∆𝑇1
∗

∆𝑇2
∗

𝑃1
∗ 𝑃2

∗

(b)

Figure 7.5: Cooling network with (a) uni-modal f and (b) monotonically decreasing f .

applied directly due to the monotonic h. Note that Algorithm 7.2 is optimal according to

the properties of h and f stated in Section 7.3.1. The proof is easy and omitted.

7.3.3 Hierarchical Tree-like Cooling Network

In our early exploration, many cooling networks were designed manually with various

styles. Among our observations, the most important one is that the thermal coupling

between different regions in a chip is strong. For example, if the upstream region of

a channel becomes slightly hotter, the temperature in the downstream region will be

increased immediately. Therefore, global consideration is more significant than the subtle

design in a local region.

Among the general structures attempted, the hierarchical tree-like structure is found to

be simple (with a controllable number of parameters) and good (with respect to improving

Wpump and ∆T under constraints). It includes several “trees” in which the coolant flows

from roots to leafs, as Figure 7.6 shows. This structure also conforms to the general con-

siderations in Section 7.2 and can: (1) make cooling in upstream and downstream regions

more even by having different surface areas of the microchannel walls (i.e., compensate

for factor 1); (2) make cooling of different trees more even by differing fluid resistance

and thus flow rates (i.e., compensate for factor 2).

7.3.4 Network Topology Optimization

In the proposed tree-like network structure, each “tree” has two parameters to be con-

figured, the positions for the first and the second branches. There are thus around 20

parameters for the whole cooling network (with the size of 101 × 101 basic cells). We

design an SA-based algorithm to search for a good configuration of those parameters.

116

Chapter 7. 3D IC Liquid Cooling Network

Algorithm 7.3 Algorithm Solving (7.12)

Require: N , ∆T ∗.
Ensure: Psys.
1: P0 ← Pinit;
2: while f(P0) < ∆T ∗ do P0 ← P0/2;
3: end while
4: S ← P0 · rinit, P1 ← P0 + S;
5: if f(P0) < f(P1) then P0 ← P0/2 and go to 2;
6: end if
7: while f(P1) > ∆T ∗ do
8: S ← 2 · S, P2 ← P1 + S;
9: while f(P1) < f(P2) do

10: if |1− P0
P1
| and |1− P2

P1
| are small enough then return P1;

11: end if
12: P2 ← P1, P1 ← (P0 + P2)/2, S ← P2 − P1;
13: end while
14: P0 ← P1, P1 ← P2;
15: if keep moving right with small |1− f(P0)

f(P1) | then return P1;
16: end if
17: end while
18: Use binary search to find Psys ∈ [P0, P1] so that f(Psys) = ∆T ∗;
19: return Psys;

First

Branch

Second

Branch

Figure 7.6: A tree-like cooling network on 23× 51 basic cells.

Before searching, N is initialized with uniform tree parameters (i.e., same position

for all first branches and same position for all second branches). There are totally four

stages, each of which corresponds to a complete SA process described in Algorithm 7.1.

1. In each iteration, every tree parameter may be changed by a large step size or

remains unchanged (with equal possibility). The acceptance of neighboring solutions

are determined by SA. ∆T under a fixed Psys is the cost function at this stage,

which only needs simulating once. Note that a single simulation can also generate a

result on Wpump, but under a fixed Psys, Wpump reveals nothing about the die power

(purely determined by N) and thus is not eligible for the cost function. Besides,

2RM simulator is used for quick searching.

117

Chapter 7. 3D IC Liquid Cooling Network

Table 7.1: Four-stage Optimization for Pumping Power Minimization

Stage Step Size Objective Simulator Runtime for an Iteration

1 10 ∆T 2RM short
2 10 W ′pump 2RM medium

3 2 W ′pump 2RM medium

4 2 W ′pump 4RM long

Figure 7.7: Eight types of global flow directions.

Figure 7.8: Three types of branches.

2. Stage 2 adopts the same move and simulator as stage 1 except that the neighboring

solution is evaluated by the lowest feasible pumping power W ′
pump. If there is no

feasible Psys, W
′
pump is +∞. This evaluating scheme needs invoking the simulator

several times and takes longer runtime.

3. It is similar to stage 2, but a smaller step size is used.

4. It is similar to stage 3 except that the more accurate 4RM simulator is applied.

Settings for the four stages are summarized in Table 7.1. In general, earlier stages are

rougher and much quicker. Therefore, with small runtime overhead, more rounds can be

afforded to fully explore the solution space. In different rounds of a stage, all settings

are the same except the random seed. After finishing a stage, the best solution in each

round is re-evaluated by the metric in the next stage (if the metric is different). The

re-evaluated best solution among all rounds is then selected as the output of the stage.

For the global flow directions (see Figure 7.7), all configurations are attempted and

the best is chosen. Besides, there are three types of suitable branches (see Figure 7.8).

They are assigned manually to fit the chip size.

7.4 Minimizing Thermal Gradient

Our method for minimizing thermal gradient (Problem 7.2) is still under the flow in

Algorithm 7.1, but adaption is necessary for validity and quality.

118

Chapter 7. 3D IC Liquid Cooling Network

Table 7.2: Three-stage Optimization for Thermal Gradient Minimization

Stage Step Size Objective Simulator Runtime for an Iteration

1 10 ∆T ′ 2RM short
2 10 ∆T ′ 4RM medium
3 2 ∆T ′ 4RM medium

First, its mathematical formulation in general becomes:

min ∆T,

s.t. Psys ∈ R+, N ∈ N ,

Tmax ≤ T ∗max, Wpump ≤ W ∗
pump,

(7.13)

where W ∗
pump is the constraint on Wpump.

Second, compared to the network evaluation process in Section 7.3.2, two modifications

are needed. (1) Its simplified form corresponding to (7.12) becomes:

min f(Psys),

s.t. Psys ∈ R+, Psys ≤ P ∗sys,
(7.14)

where P ∗sys is the constraint on Psys computed by (7.11) and W ∗
pump. (2) Solving (7.14)

is simpler. If P ∗sys locates on the falling side of f , it is the optimal solution directly;

otherwise, golden section search is adopted to find the minimum f .

Third, the network optimization process is similar to that in Section 7.3.4 with the

following changes. (1) Objective function is changed from Wpump to ∆T . (2) Several

consecutive iterations are grouped together, the first of which is evaluated normally by

the complete network evaluation process. The other iterations are then evaluated through

one simulation under a fixed Psys (the optimal Psys obtained in the first iteration). In

this way, runtime is reduced significantly. The later evaluations may be pessimistic but

inaccuracy is small because the optimal Psys of neighboring N is close. (3) The original

stage 1 is no longer needed due to the speed-up obtained from above technique 2. (4)

The speed-up also makes 4RM affordable in the original stage 3. The summary of three

stages for Problem 7.2 is in Table 7.2.

7.5 Experimental Results

Our thermal modeling and design optimization methods were implemented in C++ and

with LA library Eigen [146]. Experiments were performed on an 80-core 2.20 GHz Linux

server and with ICCAD 2015 Contest benchmarks [139]. In the benchmarks, the die is

as large as 10.1mm × 10.1mm and divided into 101 × 101 basic cells. Channel width

wc = 100µm and inlet temperature Tin = 300K. More details are listed in Table 7.3,

119

Chapter 7. 3D IC Liquid Cooling Network

Table 7.3: ICCAD 2015 Benchmark Statistics

#
Die

Num
hc

(µm)
Die Power

(W)
∆T ∗

(K)
T ∗max
(K)

Other Constraint

1 2 200 42.038 15 358.15 -
2 2 400 37.038 10 358.15 -
3 2 400 43.038 15 358.15 no channel in a restricted area
4 3 200 43.438 10 358.15 matched inlets/outlets across layers
5 2 400 148.174 10 338.15 -

where hc is the channel height, T ∗max and ∆T ∗ are constraints on Tmax and ∆T .

7.5.1 Effectiveness of 2RM Thermal Modeling

The 2RM method reduces the problem size and thus accelerates simulation significantly,

which however may lose some accuracy. To examine whether the accuracy loss is limited,

an experiment with 5 benchmarks, 40 network samples, 6 thermal cell sizes and 13 pres-

sures is conducted. The network samples cover straight-channel networks, the proposed

tree-like networks, and many styles of manual designs generated during our early explo-

ration. They are also of diverse global flow directions. The pressures used is from 103 to

105Pa.

Amoung the 5× 40× 6× 13 = 15600 2RM simulations, the error of each is evaluated

by its average relative error of thermal nodes in the source layers (compared with 4RM

simulation). Errors of all networks with different benchmarks, different pressures and

the same thermal cell size are then averaged. The same computation is also conducted

for all tree-like networks and all straight-channel networks. The result in Figure 7.9(a)

shows that accuracy decreases as the thermal cell size increases. Error is also affected

by the network structure with straight-channel networks having the smallest. Besides,

accuracy is also related to the benchmark and the pressure (details are omitted due to

space limitation). Nevertheless, errors of 2RM simulation with small thermal cell sizes

are all very small.

The runtime of 2RM depends on the thermal cell size. Figure 7.9(b) shows the runtime

speed-up over 4RM model. Here, a 4RM simulation takes 3.37 s for test cases 1, 2, 3 and

5 (with two dies), and 15.62s for case 4 (with three dies).

In general, when the thermal cell size is small, the runtime saving by enlarging thermal

cells is significant while accuracy loss is small. For example, simulating with tree-like

networks and 400µm thermal cells results in only 0.517% errors compared with 4RM,

but the runtime is reduced from 3.37s to 0.07s, which is a 50 times speed up. However,

when thermal cell becomes very large, little runtime is consumed by the LA solver and

the overhead dominates. The speed-up is thus increasingly less, while the accuracy still

keeps worsening.

120

Chapter 7. 3D IC Liquid Cooling Network

200
300

400
600

800
1100

0

2

4

6

Thermal Cell Size (µm)

E
rr

or
(%

)

all networks
tree-like networks
straight channels

(a) Accuracy

200
300

400
600

800
1100

0.001

0.01

0.1

1

Thermal Cell Size (µm)

N
o
rm

al
iz

ed
R

u
n
ti

m
e total time

solver time

(b) Runtime

Figure 7.9: Accuracy and runtime of 2RM compared to 4RM.

7.5.2 Effectiveness of Design Optimization

As a good trade-off between accuracy and runtime, 400µm thermal cell is adopted for

the 2RM simulations in solving pumping power minimization (Problem 7.1) and thermal

gradient minimization (Problem 7.2). With the multi-core computer, 64 neighboring N

solutions are evaluated simultaneously in each iteration.

As mentioned in Section 2.2.5, nearly all previous works about liquid-cooled 3D-ICs

assume straight microchannels. We thus use regular straight-channel networks as base-

lines. For each test case, straight channels of diverse global directions are evaluated by

the network evaluation process and the best is the baseline. For Problem 7.1, there is

no feasible baseline solution on case 5, due to the high and highly varied die power, and

tight T ∗max. The baseline experiments also provide a suitable Psys for stage 1 of solving

Problem 7.1. In case 3, there is a region forbidding microchannels. To satisfy the require-

ment, that region is filled by solid cells and surrounded by liquid cells, in both baseline

networks and our tree-like network designs.

For solving Problem 7.1, the four stages consist of 60, 40, 40 and 30 iterations, and 8,

4, 2 and 1 round(s), respectively. The whole SA searching takes about 40 min for cases

1-3 and about 240 min for case 4. In the difficult case 5, SA cannot find a feasible solution

with tree-like structure, so the cooling system is designed manually.

Because Problem 7.1 is exactly the formulation in ICCAD 2015 Contest, the contest

benchmarks are used directly. The result is shown in Table 7.4. Compared with the

baseline, our method achieves up to 84.03% improvement on Wpump. The Wpump of our

approach also outperforms the first place in the ICCAD 2015 Contest1 by 16.35% on

1Only the result of the first place is listed because the final score of the first is 29× and
2596× better than the second and third respectively, as reported by the contest organizer.

121

Chapter 7. 3D IC Liquid Cooling Network

Table 7.4: Result for Pumping Power Minimization (Problem 7.1)

Case # 1 2 3 4 5

Baseline
(straight
channels)

Psys (kPa) 12.98 6.23 7.85 9.71 N/A
Tmax (K) 322 314 321 314 N/A
∆T (K) 15.0 10.0 15.0 10.0 N/A

Wpump (mW) 10.41 6.91 8.34 11.65 N/A

Manual
(1st place
in ICCAD
Contest)

Psys (kPa) 8.86 5.54 6.98 9.45 40.1
Tmax (K) 357 336 328 336 338
∆T (K) 15.0 10.0 15.0 10.0 10.0

Wpump (mW) 1.72 1.51 3.36 2.96 113.96

Ours

Psys (kPa) 8.72 5.13 5.81 8.27 40.10
Psystem (kPa) 358 336 337 335 338

∆T (K) 15.00 10.0 15.0 10.00 10.00
Wpump (mW) 1.66 1.37 1.90 2.68 113.96

Table 7.5: Result for Thermal Gradient Minimization (Problem 7.2)

Case # 1 2 3 4 5

Baseline
(straight
channels)

Psys (kPa) 26.08 14.43 17.82 26.51 45.81
Tmax (K) 316 309 316 308 338

Wpump (mW) 42.0 37.0 43.0 43.4 148.2
∆T (K) 8.75 5.42 11.42 4.76 26.48

Ours

Psys (kPa) 16.51 8.96 11.46 13.80 40.06
Tmax (K) 338 319 327 321 338

Wpump (mW) 5.67 5.66 6.56 4.16 113.80
∆T (K) 5.54 3.81 7.12 3.87 9.64

20 40 60 80 100

20

40

60

80

100

(a) Bottom source layer

20 40 60 80 100

20

40

60

80

100

T
em

pe
ra

tu
re

 (
K

)

300

310

320

330

340

350

(b) Channel layer

Figure 7.10: Temperature result of case 1 for pumping power minimization.

average. To the best of our knowledge, the network designs of the first place rely heavily

on manual search, while our results are generated by automatic SA searching except for

case 5.

122

Chapter 7. 3D IC Liquid Cooling Network

20 40 60 80 100

20

40

60

80

100

(a) Bottom source layer

20 40 60 80 100

20

40

60

80

100

T
em

pe
ra

tu
re

 (
K

)

300

310

320

330

340

350

(b) Channel layer

Figure 7.11: Temperature result of case 1 for thermal gradient minimization.

For solving Problem 7.2, the three stages consist of 80, 20 and 20 iterations, and 8, 2

and 1 round(s), respectively. The whole searching takes about 180 min for case 4, and 30

min for the others.

To evaluate our algorithm for Problem 7.2, all settings in the ICCAD 2015 benchmark

are kept except that the objective is changed fromWpump to ∆T and ∆T ∗ is replaced by the

constraint W ∗
pump on Wpump. Table 7.5 shows the result when W ∗

pump is set to 0.1% of the

die power. For cases 1-4, our SA-based approach achieves as much as 37.65% improvement

on ∆T compared to the baseline, with even smaller Wpump. Due to the difficulty of case

5, manual design is used, where the cooling network with flexible topology is still much

better than the straight-channel network.

Figures 7.10 and 7.11 show the resulted temperature maps for case 1. Here, the map of

pumping power minimization is hotter in general and implies smaller Wpump, but its ∆T is

more significant. In the contrary, result of minimizing thermal gradient has much smaller

∆T with larger Wpump. In practice, the problem formulation can be chosen according to

preference between Wpump and ∆T .

123

Conclusion

In this thesis, we propose a set of algorithms tackling the three aspects of challenges,

single-net routing, multiple-net routing, and early-stage routability optimization, with

the considerations of both practical VLSI design needs and mathematical rigorousness.

For single-net routing, two important basic multi-objective optimization Steiner tree

construction problems are studied. First, we describe a novel Steiner SLT construction

method called SALT, which is efficient and has the tightest bound over all the state-of-the-

art general-graph SLT algorithms. Applying SALT to Manhattan space leads a smooth

trade-off between RSMT and RSMA for VLSI routing. Cooperating with some post-

processing techniques, it achieves superior trade-off between path length (or delay) and

wirelength, compared to both classical and recent routing tree construction algorithms.

A promising further work may be to integrate SALT into a complete routing optimization

flow. Another line of research is to consider congestion when building the tree. Second,

based on the intrinsic equivalence between ZST and HC, an efficient O(1)-approximation

algorithm, Dim Sum, and an optimal dynamic programming, Optimal Dim Sum, are

proposed for ZST construction. Besides, the optimal tree decomposition method enables

a simple yet effective integration between ZST and RSMT. The directions of future work

may include proving better approximation ratio for Dim Sum or designing even better

algorithms based on the understanding of ZST-HC equivalence. For “BST by ZST”,

other clustering methods instead of the tree decomposition may worth trying. Besides,

another line of research is to extend the idea to consider more practical factors (e.g, layer

assignment, Elmore delay, etc).

Considering the cooperation and competition of different routing trees, we provide so-

lutions to three multiple-net routing problems. First, we propose Dr. CU, an efficient and

effective detailed router, to tackle the challenges in detailed routing. A set of two-level

sparse data structures is designed for the routing grid graph of enormous size. An optimal

path search algorithm is proposed to handle the minimum-area constraint. Besides, an

efficient bulk synchronous parallel scheme is adopted to further reduce the runtime usage.

Compared with state-of-the-art detailed routers, Dr. CU shows superior routing quality,

runtime, and memory usage. Second, we propose MARCH for bus routing. Compared

with classic net-by-net routing methods, MARCH routes all the bits of a bus concurrently

for topology consistency. MARCH also has an efficient hierarchical framework, consisting

124

Chapter 7. 3D IC Liquid Cooling Network

of a coarse-grained TAP and a fine-grained TAB. To reduce the routing congestion, a

RRR scheme is used. The experiments show that compared with the top contest teams,

MARCH greatly reduces spacing violations and avoids any routing failure with com-

petitive routing costs in a much shorter runtime. Third, we investigate liquid cooling

networks for better trade-offs between energy efficiency and thermal profile. Specifically,

we develop a fast and accurate 4RM-based thermal modeling method for liquid cooling

networks. Design optimization methodologies which minimize pumping power and ther-

mal gradient respectively are then proposed. Future work includes combining cooling

networks with run-time thermal management techniques (e.g., DVFS and adjustable flow

rates) to handle dynamic die power. Moreover, since channel layers are shared by TSVs

and microchannels, another line of research is co-optimization between them for a better

global benefit.

125

Bibliography

[1] Igor L Markov. Limits on fundamental limits to computation. Nature,

512(7513):147–154, 2014.

[2] Hadi Esmaeilzadeh, Emily Blem, Renée St Amant, Karthikeyan Sankaralingam,

and Doug Burger. Power challenges may end the multicore era. Communications

of the ACM, 56(2):93–102, 2013.

[3] Charles J Alpert, Wing-Kai Chow, Kwangsoo Han, Andrew B Kahng, Zhuo Li,

Derong Liu, and Sriram Venkatesh. Prim-Dijkstra revisited: Achieving superior

timing-driven routing trees. In ACM International Symposium on Physical Design,

pages 10–17, 2018.

[4] Andrew B Kahng, Jens Lienig, Igor L Markov, and Jin Hu. VLSI physical design:

from graph partitioning to timing closure. Springer, 2011.

[5] Jason Cong. An interconnect-centric design flow for nanometer technologies. Pro-

ceedings of the IEEE, 89(4):505–528, 2001.

[6] Gengjie Chen, Peishan Tu, and Evangeline FY Young. SALT: provably good routing

topology by a novel Steiner shallow-light tree algorithm. In IEEE/ACM Interna-

tional Conference on Computer-Aided Design, pages 569–576, 2017.

[7] Gengjie Chen and Evangeline FY Young. SALT: provably good routing topology by

a novel steiner shallow-light tree algorithm. IEEE Transactions on Computer-Aided

Design of Integrated Circuits and Systems, 2019.

[8] Gengjie Chen and Evangeline FY Young. Dim Sum: Light clock tree by small

diameter sum. In IEEE/ACM Proceedings Design, Automation and Test in Eurpoe,

2019.

[9] Gengjie Chen, Chak-Wa Pui, Haocheng Li, Jinsong Chen, Bentian Jiang, and Evan-

geline FY Young. Detailed routing by sparse grid graph and minimum-area-captured

path search. In IEEE/ACM Asia and South Pacific Design Automation Conference,

pages 754–760, 2019.

126

Bibliography

[10] Jingsong Chen, Jinwei Liu, Gengjie Chen, Dan Zheng, and Evangeline FY Young.

MARCH: Maze routing under a concurrent and hierarchical scheme for buses. In

ACM/IEEE Design Automation Conference, 2019.

[11] Gengjie Chen, Jian Kuang, Zhiliang Zeng, Hang Zhang, Evangeline FY Young, and

Bei Yu. Minimizing thermal gradient and pumping power in 3D IC liquid cooling

network design. In ACM/IEEE Design Automation Conference, page 70, 2017.

[12] Jason Cong, Lei He, Cheng-Kok Koh, and Patrick H Madden. Performance opti-

mization of VLSI interconnect layout. Integration, the VLSI Journal, 21(1-2):1–94,

1996.

[13] Thomas H Cormen, Charles Eric Leiserson, Ronald L Rivest, and Clifford Stein.

Introduction to algorithms. MIT press, 2009.

[14] Maurice Hanan. On Steiner’s problem with rectilinear distance. SIAM Journal on

Applied Mathematics, 14(2):255–265, 1966.

[15] Michael R Garey and David S. Johnson. The rectilinear Steiner tree problem is

NP-complete. SIAM Journal on Applied Mathematics, 32(4):826–834, 1977.

[16] David M Warme, Pawel Winter, and Martin Zachariasen. Exact algorithms for

plane Steiner tree problems: A computational study. In Advances in Steiner trees,

pages 81–116. Springer, 2000.

[17] Frank K Hwang. On Steiner minimal trees with rectilinear distance. SIAM Journal

on Applied Mathematics, 30(1):104–114, 1976.

[18] Hai Zhou, Narendra Shenoy, and William Nicholls. Efficient minimum spanning

tree construction without delaunay triangulation. Information Processing Letters,

81(5):271–276, 2002.

[19] J-M Ho, Gopalakrishnan Vijayan, and Chak-Kuen Wong. New algorithms for the

rectilinear Steiner tree problem. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, 9(2):185–193, 1990.

[20] Andrew B Kahng and Gabriel Robins. A new class of iterative Steiner tree heuristics

with good performance. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 11(7):893–902, 1992.

[21] Jeff Griffith, Gabriel Robins, Jeffrey S Salowe, and Tongtong Zhang. Closing

the gap: Near-optimal Steiner trees in polynomial time. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 13(11):1351–1365, 1994.

127

Bibliography

[22] Manjit Borah, Robert Michael Owens, and Mary Jane Irwin. An edge-based heuris-

tic for Steiner routing. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 13(12):1563–1568, 1994.

[23] Hai Zhou. Efficient Steiner tree construction based on spanning graphs. IEEE Trans-

actions on Computer-Aided Design of Integrated Circuits and Systems, 23(5):704–

710, 2004.

[24] Andrew B Kahng, Ion I Măndoiu, and Alexander Z Zelikovsky. Highly scalable

algorithms for rectilinear and octilinear Steiner trees. In IEEE/ACM Asia and

South Pacific Design Automation Conference, pages 827–833, 2003.

[25] Chris Chu and Yiu-Chung Wong. FLUTE: Fast lookup table based rectilinear

Steiner minimal tree algorithm for VLSI design. IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, 27(1):70–83, 2008.

[26] Edsger W Dijkstra. A note on two problems in connexion with graphs. Numerische

Mathematik, 1(1):269–271, 1959.

[27] Weiping Shi and Chen Su. The rectilinear Steiner arborescence problem is NP-

complete. SIAM Journal on Computing, 35(3):729–740, 2005.

[28] L Nastansky, SM Selkow, and NF Stewart. Cost-minimal trees in directed acyclic

graphs. Mathematical Methods of Operations Research, 18(1):59–67, 1974.

[29] Jason Cong, Andrew B Kahng, and Kwok-Shing Leung. Efficient algorithms for the

minimum shortest path Steiner arborescence problem with applications to VLSI

physical design. IEEE Transactions on Computer-Aided Design of Integrated Cir-

cuits and Systems, 17(1):24–39, 1998.

[30] Sailesh K Rao, P Sadayappan, Frank K Hwang, and Peter W Shor. The rectilinear

Steiner arborescence problem. Algorithmica, 7(1-6):277–288, 1992.

[31] Javier Córdova and Yann-Hang Lee. A heuristic algorithm for the rectilinear Steiner

arborescence problem. Technical report, University of Florida, 1994.

[32] Jason Cong, Kwok-Shing Leung, and Dian Zhou. Performance-driven interconnect

design based on distributed RC delay model. In ACM/IEEE Design Automation

Conference, pages 606–611, 1993.

[33] Michael J Alexander and Gabriel Robins. New performance-driven fpga routing

algorithms. IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, 15(12):1505–1517, 1996.

128

Bibliography

[34] Min Pan, Chris Chu, and Priyadarshan Patra. A novel performance-driven topol-

ogy design algorithm. In IEEE/ACM Asia and South Pacific Design Automation

Conference, pages 244–249, 2007.

[35] Baruch Awerbuch, Alan Baratz, and David Peleg. Effcient broadcast and light-

weight spanners. Technical report, Weizmann Institute of Science, 1992.

[36] Jason Cong, Andrew B Kahng, Gabriel Robins, Majid Sarrafzadeh, and Chak-Kuen

Wong. Provably good performance-driven global routing. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 11(6):739–752, 1992.

[37] Samir Khuller, Balaji Raghavachari, and Neal Young. Balancing minimum spanning

trees and shortest-path trees. Algorithmica, 14(4):305–321, 1995.

[38] Charles J Alpert, TC Hu, JH Huang, Andrew B Kahng, and D Karger. Prim-

Dijkstra tradeoffs for improved performance-driven routing tree design. IEEE Trans-

actions on Computer-Aided Design of Integrated Circuits and Systems, 14(7):890–

896, 1995.

[39] Michael Elkin and Shay Solomon. Steiner shallow-light trees are exponentially

lighter than spanning ones. In IEEE Symposium on Foundations of Computer Sci-

ence, pages 373–382, 2011.

[40] Michael Elkin and Shay Solomon. Steiner shallow-light trees are exponentially

lighter than spanning ones. SIAM Journal on Computing, 44(4):996–1025, 2015.

[41] Stephan Held and Daniel Rotter. Shallow-light Steiner arborescences with vertex

delays. In International Conference on Integer Programming and Combinatorial

Optimization, pages 229–241, 2013.

[42] Michael AB Jackson, Arvind Srinivasan, and Ernest S Kuh. Clock routing for high-

performance ICs. In ACM/IEEE Design Automation Conference, pages 573–579,

1990.

[43] Jason Cong, Andrew B Kahng, and Gabriel Robins. Matching-based methods for

high-performance clock routing. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, 12(8):1157–1169, 1993.

[44] Ting-Hai Chao, Yu-Chin Hsu, Jan-Ming Ho, and AB Kahng. Zero skew clock

routing with minimum wirelength. IEEE Transactions on Circuits and Systems II,

39(11):799–814, 1992.

[45] Ren-Song Tsay. An exact zero-skew clock routing algorithm. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 12(2):242–249, 1993.

129

Bibliography

[46] Masato Edahiro. A clustering-based optimization algorithm in zero-skew routings.

In ACM/IEEE Design Automation Conference, pages 612–616, 1993.

[47] Moses Charikar, Jon Kleinberg, Ravi Kumar, Sridhar Rajagopalan, Amit Sahai,

and Andrew Tomkins. Minimizing wirelength in zero and bounded skew clock trees.

SIAM Journal on Discrete Mathematics, 17(4):582–595, 2004.

[48] Alexander Z Zelikovsky and Ion I Mandoiu. Practical approximation algorithms for

zero-and bounded-skew trees. SIAM Journal on Discrete Mathematics, 15(1):97–

111, 2002.

[49] Andrew B Kahng and Gabriel Robins. On optimal interconnections for VLSI, vol-

ume 301. Springer Science & Business Media, 1994.

[50] Jason Cong, Andrew B Kahng, Cheng-Kok Koh, and C-W Albert Tsao. Bounded-

skew clock and Steiner routing. ACM Transactions on Design Automation of Elec-

tronic Systems, 3(3):341–388, 1998.

[51] David Papa, Charles Alpert, Cliff Sze, Zhuo Li, Natarajan Viswanathan, Gi-Joon

Nam, and Igor Markov. Physical synthesis with clock-network optimization for

large systems on chips. IEEE/ACM International Symposium on Microarchitecture,

31(4):51–62, 2011.

[52] Charles J Alpert, Gopal Gandham, Milos Hrkic, Jiang Hu, Andrew B Kahng, John

Lillis, Bao Liu, Stephen T Quay, Sachin S Sapatnekar, and AJ Sullivan. Buffered

steiner trees for difficult instances. IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, 21(1):3–14, 2002.

[53] Muhammet Mustafa Ozdal, Steven Burns, and Jiang Hu. Gate sizing and de-

vice technology selection algorithms for high-performance industrial designs. In

IEEE/ACM International Conference on Computer-Aided Design, pages 724–731,

2011.

[54] Stephan Held, Bernhard Korte, Jens Maβberg, Matthias Ringe, and Jens Vy-

gen. Clock scheduling and clocktree construction for high performance ASICs. In

IEEE/ACM International Conference on Computer-Aided Design, page 232, 2003.

[55] Chuan Yean Tan, Rickard Ewetz, and Cheng-Kok Koh. Clustering of flip-flops for

useful-skew clock tree synthesis. In IEEE/ACM Asia and South Pacific Design

Automation Conference, pages 507–512, 2018.

[56] Kwangsoo Han, Andrew B Kahng, Christopher Moyes, and Alex Zelikovsky. A

study of optimal cost-skew tradeoff and remaining suboptimality in interconnect

130

Bibliography

tree constructions. In ACM Workshop on System Level Interconnect Prediction,

page 2, 2018.

[57] Charles J Alpert, Dinesh P Mehta, and Sachin S Sapatnekar, editors. Handbook of

algorithms for physical design automation. CRC press, 2008.

[58] Chin Yang Lee. An algorithm for path connections and its applications. IRE

transactions on electronic computers, 10(3):346–365, 1961.

[59] Larry McMurchie and Carl Ebeling. Pathfinder: a negotiation-based performance-

driven router for fpgas. In ACM Symposium on FPGAs, pages 111–117. ACM,

1995.

[60] Ryan Kastner, Elaheh Bozorgzadeh, and Majid Sarrafzadeh. Pattern routing: use

and theory for increasing predictability and avoiding coupling. IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, 21(7):777–790, 2002.

[61] Jarrod A Roy and Igor L Markov. High-performance routing at the nanometer scale.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,

27(6):1066–1077, 2008.

[62] Min Pan and Chris Chu. FastRoute: A step to integrate global routing into place-

ment. In IEEE/ACM International Conference on Computer-Aided Design, pages

464–471, 2006.

[63] Min Pan and Chris Chu. Fastroute 2.0: A high-quality and efficient global router. In

IEEE/ACM Asia and South Pacific Design Automation Conference, pages 250–255,

2007.

[64] Yue Xu, Yanheng Zhang, and Chris Chu. FastRoute 4.0: global router with effi-

cient via minimization. In IEEE/ACM Asia and South Pacific Design Automation

Conference, pages 576–581, 2009.

[65] Minsik Cho and David Z Pan. Boxrouter: a new global router based on box ex-

pansion and progressive ilp. IEEE Transactions on Computer-Aided Design of In-

tegrated Circuits and Systems, 26(12):2130–2143, 2007.

[66] Minsik Cho, Katrina Lu, Kun Yuan, and David Z Pan. BoxRouter 2.0: A hybrid

and robust global router with layer assignment for routability. ACM Transactions

on Design Automation of Electronic Systems, 14(2):32, 2009.

[67] Muhammet Mustafa Ozdal and Martin DF Wong. Archer: A history-based global

routing algorithm. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 28(4):528–540, 2009.

131

Bibliography

[68] Yen-Jung Chang, Yu-Ting Lee, Jhih-Rong Gao, Pei-Ci Wu, and Ting-Chi Wang.

NTHU-Route 2.0: a robust global router for modern designs. IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems, 29(12):1931–1944,

2010.

[69] Wen-Hao Liu, Wei-Chun Kao, Yih-Lang Li, and Kai-Yuan Chao. NCTU-GR 2.0:

Multithreaded collision-aware global routing with bounded-length maze routing.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,

32(5):709–722, 2013.

[70] Christoph Albrecht. Global routing by new approximation algorithms for multicom-

modity flow. IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, 20(5):622–632, 2001.

[71] Tai-Hsuan Wu, Azadeh Davoodi, and Jeffrey T Linderoth. GRIP: Global routing via

integer programming. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 30(1):72–84, 2011.

[72] Michael Gester, Dirk Müller, Tim Nieberg, Christian Panten, Christian Schulte,

and Jens Vygen. BonnRoute: Algorithms and data structures for fast and good vlsi

routing. ACM Transactions on Design Automation of Electronic Systems, 18(2):32,

2013.

[73] Stephan Held, Dirk Muller, Daniel Rotter, Rudolf Scheifele, Vera Traub, and Jens

Vygen. Global routing with timing constraints. IEEE Transactions on Computer-

Aided Design of Integrated Circuits and Systems, 37(2):406–419, 2018.

[74] Yanheng Zhang and Chris Chu. RegularRoute: An efficient detailed router apply-

ing regular routing patterns. IEEE Transactions on Very Large Scale Integration

Systems, 21(9):1655–1668, 2013.

[75] Stefanus Mantik, Gracieli Posser, Wing-Kai Chow, Yixiao Ding, and Wen-Hao Liu.

ISPD 2018 initial detailed routing contest and benchmarks. In ACM International

Symposium on Physical Design, pages 140–143, 2018.

[76] Fong-Yuan Chang, Ren-Song Tsay, Wai-Kei Mak, and Sheng-Hsiung Chen. MANA:

A shortest path maze algorithm under separation and minimum length nanometer

rules. IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, 32(10):1557–1568, 2013.

[77] Markus Ahrens, Michael Gester, Niko Klewinghaus, Dirk Müller, Sven Peyer, Chris-

tian Schulte, and Gustavo Tellez. Detailed routing algorithms for advanced tech-

nology nodes. IEEE Transactions on Computer-Aided Design of Integrated Circuits

and Systems, 34(4):563–576, 2015.

132

Bibliography

[78] Muhammet Mustafa Ozdal. Detailed-routing algorithms for dense pin clusters in

integrated circuits. IEEE Transactions on Computer-Aided Design of Integrated

Circuits and Systems, 28(3):340–349, 2009.

[79] Tim Nieberg. Gridless pin access in detailed routing. In ACM/IEEE Design Au-

tomation Conference, pages 170–175, 2011.

[80] Xiaoqing Xu, Yibo Lin, Vinicius Livramento, and David Z Pan. Concurrent pin

access optimization for unidirectional routing. In ACM/IEEE Design Automation

Conference, page 20, 2017.

[81] Qiang Ma, Hongbo Zhang, and Martin DF Wong. Triple patterning aware routing

and its comparison with double patterning aware routing in 14nm technology. In

ACM/IEEE Design Automation Conference, pages 591–596, 2012.

[82] Yen-Hung Lin, Bei Yu, David Z Pan, and Yih-Lang Li. Triad: A triple pattern-

ing lithography aware detailed router. In IEEE/ACM International Conference on

Computer-Aided Design, pages 123–129, 2012.

[83] Zhiqing Liu, Chuangwen Liu, and Evangeline F. Y. Young. An effective triple

patterning aware grid-based detailed routing approach. In IEEE/ACM Proceedings

Design, Automation and Test in Eurpoe, pages 1641–1646, 2015.

[84] Yixiao Ding, Chris Chu, and Wai-Kei Mak. Self-aligned double patterning-aware

detailed routing with double via insertion and via manufacturability consideration.

IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,

37(3):657–668, 2018.

[85] Yu-Hsuan Su and Yao-Wen Chang. VCR: Simultaneous via-template and cut-

template-aware routing for directed self-assembly technology. In IEEE/ACM In-

ternational Conference on Computer-Aided Design, pages 49:1–49:8, 2016.

[86] Andrew B Kahng, Lutong Wang, and Bangqi Xu. TritonRoute: an initial detailed

router for advanced vlsi technologies. In IEEE/ACM International Conference on

Computer-Aided Design, pages 81:1–81:8, 2018.

[87] Fan-Keng Sun, Hao Chen, Ching-Yu Chen, Chen-Hao Hsu, and Yao-Wen Chang. A

multithreaded initial detailed routing algorithm considering global routing guides.

In IEEE/ACM International Conference on Computer-Aided Design, pages 82:1–

82:7, 2018.

[88] Hui Kong, Tan Yan, and Martin D. F. Wong. Optimal simultaneous pin assignment

and escape routing for dense PCBs. In IEEE/ACM Asia and South Pacific Design

Automation Conference, pages 275–280, 2010.

133

Bibliography

[89] Qiang Ma, Evangeline F. Y. Young, and Martin D. F. Wong. An optimal algo-

rithm for layer assignment of bus escape routing on PCBs. In ACM/IEEE Design

Automation Conference, pages 176–181, 2011.

[90] Pei-Ci Wu, Qiang Ma, and Martin D. F. Wong. An ILP-based automatic bus

planner for dense PCBs. In IEEE/ACM Asia and South Pacific Design Automation

Conference, pages 181–186, 2013.

[91] Derong Liu, Bei Yu, Vinicius Livramento, Salim Chowdhury, Duo Ding, Huy Vo,

Akshay Sharma, and David Z Pan. Synergistic topology generation and route

synthesis for on-chip performance-critical signal groups. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, page 18, 2018.

[92] Shekhar Borkar. 3D integration for energy efficient system design. In ACM/IEEE

Design Automation Conference, pages 214–219, 2011.

[93] C. Serafy et al. Unlocking the true potential of 3-D CPUs with microfluidic cooling.

IEEE Transactions on Very Large Scale Integration Systems, 24(4):1515–1523, 2016.

[94] Thomas Brunschwiler, B. Michel, Hugo Rothuizen, U. Kloter, B. Wunderle, H. Op-

permann, and H. Reichl. Forced convective interlayer cooling in vertically integrated

packages. In IEEE Intersociety Thermal Conference (ITherm), pages 1114–1125,

2008.

[95] Caleb Serafy, Bing Shi, Anurag Srivastava, and Donald Yeung. High performance

3D stacked DRAM processor architectures with micro-fluidic cooling. In IEEE

International 3D Systems Integration Conference, pages 1–8, 2013.

[96] Bing Dang, Muhannad S. Bakir, Deepak Chandra Sekar, Calvin R. King Jr, and

James D. Meindl. Integrated microfluidic cooling and interconnects for 2D and 3D

chips. IEEE Transactions on Advanced Packaging, 33(1):79–87, 2010.

[97] Calvin R. King Jr, Jesal Zaveri, Muhannad S. Bakir, and James D. Meindl. Electri-

cal and fluidic C4 interconnections for inter-layer liquid cooling of 3D ICs. In IEEE

Electronic Components and Technology Conference, pages 1674–1681, 2010.

[98] T. Brunschwiler, S. Paredes, U. Drechsler, B. Michel, W. Cesar, Y. Leblebici,

B. Wunderle, and H. Reichl. Heat-removal performance scaling of interlayer cooled

chip stacks. In IEEE Intersociety Thermal Conference (ITherm), pages 1–12, 2010.

[99] Mohamed M. Sabry, Arvind Sridhar, Jie Meng, Ayse K. Coskun, and David Atienza.

GreenCool: An energy-efficient liquid cooling design technique for 3-D mpsocs via

channel width modulation. IEEE Transactions on Computer-Aided Design of Inte-

grated Circuits and Systems, 32(4):524–537, 2013.

134

Bibliography

[100] Suresh V. Garimella, Vishal Singhal, and Dong Liu. On-chip thermal management

with microchannel heat sinks and integrated micropumps. Proceedings of the IEEE,

94(8):1534–1548, 2006.

[101] Hanhua Qian, Chip-Hong Chang, and Hao Yu. An efficient channel clustering and

flow rate allocation algorithm for non-uniform microfluidic cooling of 3D integrated

circuits. Integration, the VLSI Journal, 46(1):57–68, 2013.

[102] Bing Shi, Ankur Srivastava, and Avram Bar-Cohen. Hybrid 3D-IC cooling system

using micro-fluidic cooling and thermal TSVs. In IEEE Annual Symposium on

VLSI, pages 33–38, 2012.

[103] Bing Shi and Anurag Srivastava. Optimized micro-channel design for stacked 3-

D-ICs. IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems, 33(1):90–100, 2014.

[104] Mohamed M. Sabry, Ayse K. Coskun, David Atienza, Tajana Šimunić Rosing, and

Thomas Brunschwiler. Energy-efficient multiobjective thermal control for liquid-

cooled 3-D stacked architectures. IEEE Transactions on Computer-Aided Design of

Integrated Circuits and Systems, 30(12):1883–1896, 2011.

[105] Tijs Van Oevelen and Martine Baelmans. Numerical topology optimization of heat

sinks. In International Heat Transfer Conference, pages 10–15, 2014.

[106] Christoph Bartoschek, Stephan Held, Jens Maßberg, Dieter Rautenbach, and Jens

Vygen. The repeater tree construction problem. Information Processing Letters,

110(24):1079–1083, 2010.

[107] Stephan Held and Benjamin Rockel. Exact algorithms for delay-bounded Steiner

arborescences. In ACM/IEEE Design Automation Conference, pages 44:1–44:6,

2018.

[108] Zhuo Li, Charles J Alpert, Shiyan Hu, Tuhin Muhmud, Stephen T Quay, and

Paul G Villarrubia. Fast interconnect synthesis with layer assignment. In ACM

International Symposium on Physical Design, pages 71–77, 2008.

[109] Rudolf Scheifele. RC-aware global routing. In IEEE/ACM International Conference

on Computer-Aided Design, pages 21:1–21:8, 2016.

[110] Rudolf Scheifele. Steiner trees with bounded RC-delay. Algorithmica, 78(1):86–109,

2017.

[111] Shay Solomon. Euclidean steiner shallow-light trees. In International Symposium

on Computational Geometry, page 454, 2014.

135

Bibliography

[112] Shay Solomon. Euclidean steiner shallow-light trees. Journal of Computational

Geometry, 6(2):113–139, 2015.

[113] Antonin Guttman. R-trees: A dynamic index structure for spatial searching. In

ACM SIGMOD Conference, pages 47–57, 1984.

[114] Kenneth D Boese, Andrew B Kahng, and Gabriel Robins. High-performance routing

trees with identified critical sinks. In ACM/IEEE Design Automation Conference,

pages 182–187, 1993.

[115] Sheng-En David Lin and Dae Hyun Kim. Construction of all rectilinear Steiner

minimum trees on the hanan grid. In ACM International Symposium on Physical

Design, pages 18–25, 2018.

[116] Myung-Chul Kim, Jin Hu, Jiajia Li, and Natarajan Viswanathan. ICCAD-2015

CAD Contest in incremental timing-driven placement and benchmark suite. In

IEEE/ACM International Conference on Computer-Aided Design, pages 921–926,

2015.

[117] Rui Xu and Donald Wunsch. Survey of clustering algorithms. IEEE Transactions

on Neural Networks, 16(3):645–678, 2005.

[118] Masato Edahiro. Equispreading tree in Manhattan distance. Algorithmica,

16(3):316–338, 1996.

[119] Robert J Fowler, Michael S Paterson, and Steven L Tanimoto. Optimal packing and

covering in the plane are NP-complete. Information Processing Letters, 12(3):133–

137, 1981.

[120] Teofilo F Gonzalez. Clustering to minimize the maximum intercluster distance.

Theoretical Computer Science, 38:293–306, 1985.

[121] Tomás Feder and Daniel Greene. Optimal algorithms for approximate clustering.

In ACM Symposium on Theory of computing, pages 434–444, 1988.

[122] Anna Großwendt and Heiko Röglin. Improved analysis of complete-linkage cluster-

ing. Algorithmica, 78(4):1131–1150, 2017.

[123] Marcel R Ackermann, Johannes Blömer, Daniel Kuntze, and Christian Sohler. Anal-

ysis of agglomerative clustering. Algorithmica, 69(1):184–215, 2014.

[124] Drago Krznaric and Christos Levcopoulos. Optimal algorithms for complete linkage

clustering in d dimensions. Theoretical Computer Science, 286(1):139–149, 2002.

136

Bibliography

[125] Sergei N Bespamyatnikh. An optimal algorithm for closest-pair maintenance. Dis-

crete & Computational Geometry, 19(2):175–195, 1998.

[126] Sanjoy Dasgupta and Philip M Long. Performance guarantees for hierarchical clus-

tering. Journal of Computer and System Sciences, 70(4):555–569, 2005.

[127] Donald Ervin Knuth. The art of computer programming, volume 3. Pearson Edu-

cation, 1997.

[128] Cliff N Sze, Phillip Restle, Gi-Joon Nam, and Charles Alpert. ISPD 2009 clock

network synthesis contest. In ACM International Symposium on Physical Design,

pages 149–150, 2009.

[129] Cliff N Sze. ISPD 2010 high performance clock network synthesis contest: bench-

mark suite and results. In ACM International Symposium on Physical Design, pages

143–143, 2010.

[130] Dennis JH Huang, Andrew B Kahng, and Chung-Wen Albert Tsao. On the

bounded-skew clock and Steiner routing problems. In ACM/IEEE Design Automa-

tion Conference, pages 508–513, 1995.

[131] VLSI CAD software bookshelf: Bounded-skew clock tree routing. http://

vlsicad.ucsd.edu/GSRC/bookshelf/Slots/BST/.

[132] Leslie G Valiant. A bridging model for parallel computation. Communications of

the ACM, 33(8):103–111, 1990.

[133] Edsger W Dijkstra. Solution of a problem in concurrent programming control.

Communications of the ACM, 8(9):569, 1965.

[134] Boost geometry library. http://www.boost.org/doc/libs/1_67_0/libs/

geometry/doc/html/.

[135] Guilherme Flach, Mateus Fogaça, Jucemar Monteiro, Marcelo Johann, and Ricardo

Reis. Rsyn: An extensible physical synthesis framework. In ACM International

Symposium on Physical Design, pages 33–40, 2017.

[136] Cadence Innovus Implementation System. http://www.cadence.com.

[137] ISPD 2018 Contest. http://www.ispd.cc/contests/18/.

[138] ICCAD 2018 Contest. http://iccad-contest.org/2018/.

[139] Arvind Sridhar, Mohamed M Sabry, and David Atienza. ICCAD 2015 Contest in

3D interlayer cooling optimized network. In IEEE/ACM International Conference

on Computer-Aided Design, pages 912–915, 2015.

137

http://vlsicad.ucsd.edu/GSRC/bookshelf/Slots/BST/
http://vlsicad.ucsd.edu/GSRC/bookshelf/Slots/BST/
http://www.boost.org/doc/libs/1_67_0/libs/geometry/doc/html/
http://www.boost.org/doc/libs/1_67_0/libs/geometry/doc/html/
http://www.cadence.com
http://www.ispd.cc/contests/18/
http://iccad-contest.org/2018/

[140] Wei Huang, Shougata Ghosh, Siva Velusamy, Karthik Sankaranarayanan, Kevin

Skadron, and Mircea R. Stan. HotSpot: A compact thermal modeling methodology

for early-stage VLSI design. IEEE Transactions on Very Large Scale Integration

Systems, 14(5):501–513, 2006.

[141] Yoon Jo Kim, Yogendra K. Joshi, Andrei G. Fedorov, Young-Joon Lee, and Sung-

Kyu Lim. Thermal characterization of interlayer microfluidic cooling of three-

dimensional integrated circuits with nonuniform heat flux. Journal of Heat Transfer,

132(4):041009, 2010.

[142] Hitoshi Mizunuma, Yi-Chang Lu, and Chia-Lin Yang. Thermal modeling and

analysis for 3-D ICs with integrated microchannel cooling. IEEE Transactions on

Computer-Aided Design of Integrated Circuits and Systems, 30(9):1293–1306, 2011.

[143] Arvind Sridhar, Alessandro Vincenzi, David Atienza, and Thomas Brunschwiler.

3D-ICE: A compact thermal model for early-stage design of liquid-cooled ICs. IEEE

Transactions on Computers, 63(10):2576–2589, 2014.

[144] T. L. Bergman et al. Fundamentals of Heat and Mass Transfer. John Wiley & Sons,

2011.

[145] R. K. Shah et al. Laminar Flow Forced Convection in Ducts. Academic Press, 1978.

[146] Eigen. http://www.eigen.tuxfamily.org/.

http://www.eigen.tuxfamily.org/

Publication List

[1] Gengjie Chen, Chak-Wa Pui, Haocheng Li and Evangeline F. Y. Young, “Dr. CU:

Detailed Routing by Sparse Grid Graph and Minimum-Area-Captured Path Search”,

accepted by IEEE Transactions on Computer-Aided Design of Integrated Circuits and

Systems.

[2] Gengjie Chen and Evangeline F. Y. Young, “SALT: Provably Good Routing Topology

by a Novel Steiner Shallow-Light Tree Algorithm”, accepted by IEEE Transactions

on Computer-Aided Design of Integrated Circuits and Systems.

[3] Gengjie Chen, Chak-Wa Pui, Wing-Kai Chow, Ka-Chun Lam, Jian Kuang, Evangeline

F. Y. Young and Bei Yu, “RippleFPGA: Routability-Driven Simultaneous Packing

and Placement for Modern FPGAs”, IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, vol. 37, no. 10, pp. 2022—2035, 2018.

[4] Haocheng Li, Gengjie Chen, Bentian Jiang, Jingsong Chen and Evangeline F. Y.

Young, “Dr. CU 2.0: A Scalable Detailed Routing Framework with Correct-by-

Construction Design Rule Satisfaction”, IEEE/ACM International Conference on

Computer-Aided Design, Nov, 2019.

[5] Jingsong Chen, Jinwei Liu, Gengjie Chen, Dan Zheng and Evangeline F. Y. Young,

“MARCH: Maze Routing Under a Concurrent and Hierarchical Scheme for Buses”,

ACM/IEEE Design Automation Conference, June, 2019.

[6] Bentian Jiang, Xiaopeng Zhang, Ran Chen, Gengjie Chen, Peishan Tu, Wei Li, Evan-

geline F. Y. Young and Bei Yu, “FIT: Fill Insertion Considering Timing”, ACM/IEEE

Design Automation Conference, June, 2019.

[7] Gengjie Chen and Evangeline F. Y. Young, “Dim Sum: Light Clock Tree by Small

Diameter Sum”, IEEE/ACM Design, Automation and Test in Europe, Mar, 2019.

[8] Gengjie Chen, Chak-Wa Pui, Haocheng Li, Jingsong Chen, Bentian Jiang and Evan-

geline F. Y. Young, “Detailed Routing by Sparse Grid Graph and Minimum-Area-

Captured Path Search”, IEEE/ACM Asia and South Pacific Design Automation Con-

ference, Jan, 2019.

139

Publication List

[9] Haocheng Li, Wing-Kai Chow, Gengjie Chen, Evangeline F. Y. Young and Bei Yu,

“Routability-Driven and Fence-Aware Legalization for Mixed-Cell-Height Circuits”,

ACM/IEEE Design Automation Conference, June, 2018.

[10] Chak-Wa Pui, Peishan Tu, Haocheng Li, Gengjie Chen and Evangeline F. Y. Young,

“A Two-Step Search Engine For Large Scale Boolean Matching Under NP3 Equiv-

alence”, IEEE/ACM Asia and South Pacific Design Automation Conference, Jan,

2018.

[11] Gengjie Chen, Peishan Tu and Evangeline F. Y. Young, “SALT: Provably Good

Routing Topology by a Novel Steiner Shallow-Light Tree Algorithm”, IEEE/ACM In-

ternational Conference on Computer-Aided Design, Nov, 2017. (Best Paper Award)

[12] Chak-Wa Pui, Gengjie Chen, Yuzhe Ma, Evangeline F. Y. Young and Bei Yu, “Clock-

Aware UltraScale FPGA Placement with Machine Learning Routability Prediction”,

IEEE/ACM International Conference on Computer-Aided Design, Nov, 2017.

[13] Gengjie Chen, Jian Kuang, Zhiliang Zeng, Hang Zhang, Evangeline F. Y. Young and

Bei Yu, “Minimizing Thermal Gradient and Pumping Power in 3D IC Liquid Cooling

Network Design”, IEEE/ACM Design Automation Conference, Jun, 2017.

[14] Chak-Wa Pui, Gengjie Chen, Wing-Kai Chow, Jian Kuang, Ka-Chun Lam, Peishan

Tu, Hang Zhang, Evangeline F. Y. Young and Bei Yu, “RippleFPGA: A Routability-

Driven Placement for Large-Scale Heterogeneous FPGAs”, IEEE/ACM International

Conference on Computer-Aided Design, Nov, 2016.

140

	Contents
	List of Figures
	List of Tables
	I Introduction and Background
	Introduction
	VLSI Design
	VLSI Routing Problem
	Overview of this Thesis

	Literature Review
	Single-Net Routing
	Wirelength Minimization
	Trade-off Between Wirelength and Path Length
	Trade-off Between Wirelength and Skew

	Multiple-Net Routing
	Sequential and Concurrent Routing
	Global Routing
	Detailed Routing
	Bus Routing
	3D IC Liquid Cooling Network

	II Single-Net Routing
	Trade-off Between Wirelength and Path Length
	Steiner Shallow-light Tree Algorithm
	Preliminaries
	Framework
	Light Steiner Shortest-Path Tree
	Bound Analysis

	Rectilinear Steiner Shallow-light Tree Algorithm
	Safe Refinement
	Intersected Edge Canceling
	L-/Z-Shape Edge Flipping
	U-Shape Edge Shifting
	Order of Safe Refinement Techniques

	Shallowness-Constrained Edge Substitution
	Experimental Results
	Effectivenss of Post Processing
	Superiority over Other Methods

	Trade-off Between Wirelength and Skew
	Zero-Skew Tree Properties
	Manhattan Circle
	Manhattan Bounding Circle
	ZST/DME by Manhattan Bounding Circle
	ZST by Hierachical Clustering
	Proof of Theorem 4.3

	Zero-Skew Tree Construction
	Efficient and Effective Iterative Merging
	Other Approximation Algorithms
	Optimal Dynamic Programming

	Bounded-Skew Tree Construction
	Experimental Results

	III Multiple-Net Routing
	Detailed Routing
	Preliminaries
	Routing Space
	Design Rules
	Problem Formulation

	Two-Level Sparse Data Structures
	Sparse Global Grid Graph
	Global Grid Graph Query by Look-up Table
	Sparse Local Grid Graph

	Routing Algorithm
	Edge Cost in Local Grid Graph
	Minimum-Area-Captured Path Search
	Rip-up and Reroute

	Parallelism
	Experimental Results
	Effectiveness of Quality Enhancement
	Effectiveness of Runtime Reduction
	Comparison with State-of-the-Art Detailed Routers

	Bus Routing
	Preliminaries
	Evaluation Metrics
	Problem Formulation

	Algorithms
	Bus-based Grid Graph (BGG)
	Topology-Aware Path Planning (TAP)
	Track Assignment for Bits (TAB)
	Rip-up and Reroute Scheme

	Experimental Results

	3D IC Liquid Cooling Network
	Thermal Modeling
	Preliminaries
	Pressure and Flow Rate
	4RM-Based Thermal Modeling
	Faster 2RM-Based Thermal Modeling

	Problem Formulations
	General Considerations

	Minimizing Pumping Power
	Relationship Between Pressure and Temperature
	Network Evaluation
	Hierarchical Tree-like Cooling Network
	Network Topology Optimization

	Minimizing Thermal Gradient
	Experimental Results
	Effectiveness of 2RM Thermal Modeling
	Effectiveness of Design Optimization

	Conclusion
	Bibliography
	Publication List

